Vol. 53
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-05-31
An Efficient Algorithm for the Novel Weakly Conditionally Stable FDTD Method
By
Progress In Electromagnetics Research Letters, Vol. 53, 107-113, 2015
Abstract
In this paper, we present an efficient formulation of the novel weakly conditionally stable finite-difference time-domain (NWCS-FDTD) method for the electromagnetic problems with very fine structures in one or two directions. The formulation is obtained by using only algebraic manipulation of the original method, and therefore the numerical stability and dispersion properties can be preserved. Moreover, due to its simpler right-hand sides of the updating equations, the proposed algorithm is more efficient than the existing WCS-FDTD methods, allowing a significant reduction in the cost of CPU time. Numerical experiments are finally given to verify the accuracy and efficiency of the proposed method.
Citation
Qi Liu, Xi-Kui Ma, and Feng Chen, "An Efficient Algorithm for the Novel Weakly Conditionally Stable FDTD Method," Progress In Electromagnetics Research Letters, Vol. 53, 107-113, 2015.
doi:10.2528/PIERL15033005
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Edition, Artech House, Boston, MA, USA, 2005.

2. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075

3. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, Nov. 1999.
doi:10.1109/75.808026

4. Yuan, C. and Z. Chen, "A three-dimensional unconditionally stable ADI-FDTD method in the cylindrical coordinate system," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2401-2405, Oct. 2002.
doi:10.1109/TMTT.2002.803450

5. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381

6. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell’s equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166

7. Ahmed, I., E. Chan, E. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544

8. Lee, J. and B. Fornberg, "A split step approach for the 3-D Maxwell’s equations," J. Comput. Appl. Math., Vol. 158, 485-505, Sep. 2003.
doi:10.1016/S0377-0427(03)00484-9

9. Lee, J. and B. Fornberg, "Some unconditionally stable time stepping methods for the 3D Maxwell’s equations," J. Comput. Appl. Math., Vol. 166, 497-523, Mar. 2004.
doi:10.1016/j.cam.2003.09.001

10. Chen, J. and J. Wang, "A novel WCS-FDTD method with weakly conditional stability," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 419-426, 2007.
doi:10.1109/TEMC.2007.897130

11. Chen, J. and J. Wang, "A novel body-of-revolution finite-difference time-domain method with weakly conditional stability," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 6, 377-379, 2008.
doi:10.1109/LMWC.2008.922574

12. Wang, J., B. Zhou, L. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditional stability FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.
doi:10.2528/PIER12071904

13. Tan, E. L., "Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 1, 7-9, 2007.
doi:10.1109/LMWC.2006.887239

14. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 170-177, 2008.
doi:10.1109/TAP.2007.913089