1. Hansen, W. W., "A type of electrical resonator," J. Appl. Phys., Vol. 9, No. 10, 654-663, Oct. 1938.
doi:10.1063/1.1710371
2. Barrow, W. L. and W. W. Mieher, "Natural oscillations of electrical cavity resonators," IRE Proc., Vol. 28, No. 4, 184-191, Apr. 1940.
doi:10.1109/JRPROC.1940.228082
3. Gallagher, S. and W. J. Gallagher, "The spherical resonator," IEEE Trans. Nucl. Sci., Vol. 32, No. 5, 2980-2982, Oct. 1985.
doi:10.1109/TNS.1985.4334247
4. Nepal, N., Y. K. Kim, Y. S. Bae, I. S. Ko, M. H. Cho, and W. Namkung, "Design study on standing-wave linear accelerator," IEEE Proc. PAC 2001, Vol. 4, 2802-2804, Jun. 2001.
5. Shvets, G., "Optical polarizer/isolator based on a rectangular waveguide with helical grooves," Appl. Phys. Lett., Vol. 89, No. 14, 141127, Oct. 2006.
doi:10.1063/1.2355466
6. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
7. Otter, W. J., S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, "100 GHz ultra-high Q-factor photonic crystal resonators," Sensors and Actuators A: Physical, Vol. 217, 151-159, Sep. 2014.
doi:10.1016/j.sna.2014.06.022
8. Papantonis, S., N. M. Ridler, and S. Lucyszyn, "Rectangular waveguide enabling technology using holey surfaces and wire media metamaterials," Sensors and Actuators A: Physical, Vol. 209, 1-8, Mar. 2014.
doi:10.1016/j.sna.2014.01.005
9. Maier, S. A., Plasmonics: Fundamentals and Applications, Springe, 2007.
10. Papantonis, S., S. Lucyszyn, and E. Shamonina, "Dispersion effects in Fakir’s bed of nails metamaterial waveguides," J. Appl. Phys., Vol. 115, No. 5, 054903, Feb. 2014.
doi:10.1063/1.4863461
11. Choi, J. Y. and S. Lucyszyn, "HFSS modelling anomalies with electrically thin-walled metal-pipe rectangular waveguide simulations," 10th IEEE High Frequency Postgraduate Student Colloquium (10th HF-PgC) Digest, 95-98, Leeds, Sep. 2005.
12. Episkopou, E., S. Papantonis, W. J. Otter, and S. Lucyszyn, "Defining material parameters in commercial EM solvers for arbitrary metal-based THz structures," IEEE Trans. Terahertz Sci. Technol., Vol. 2, No. 4, 513-524, Sep. 2012.
doi:10.1109/TTHZ.2012.2208456
13. Slater, J. C., "Microwave electronics," Rev. Mod. Phys., Vol. 18, No. 4, 441-512, Oct. 1946.
doi:10.1103/RevModPhys.18.441
14. Hadidi, A. and M. Hamid, "Analysis of a cylindrical cavity resonator with absorbing wall," Int. J. Electronics, Vol. 63, No. 3, 435-442, Mar. 1987.
doi:10.1080/00207218708939148
15. Gastine, M., L. Courtois, and J. L. Dormain, "Electromagnetic resonances of free dielectric spheres," IEEE Trans. Microw. Theory Techn., Vol. 15, No. 12, 694-700, Dec. 1967.
doi:10.1109/TMTT.1967.1126568
16. Collin, R. E., Field Theory of Guided Waves, 2nd Edition, IEEE Press, 1991.
17. Lucyszyn, S. and Y. Zhou, "Engineering approach to modelling frequency dispersion within normal metals at room temperature for THz applications," Progress In Electromagnetics Research, Vol. 101, 257-275, 2010.
doi:10.2528/PIER09121506
18. Zhou, Y. and S. Lucyszyn, "Modelling of reconfigurable terahertz integrated architecture (RETINA) SIW structures," Progress In Electromagnetics Research, Vol. 105, 71-92, 2010.
doi:10.2528/PIER10041806
19. Jiang, J., R. Saito, A. Grueneis, G. Dresselhaus, and M. S. Dresselhaus, "Electron-photon interaction and relaxation time in graphite," Chem. Phys. Lett., Vol. 392, 383-389, 2004.
doi:10.1016/j.cplett.2004.05.097
20., http://www.ansys.com/products/hf/hfss/.
21., http://www.comsol.com/.
22. Pozar, D. M., Microwave Engineering, 2nd Edition, Wiley, 1998.
23. Zhou, Y. and S. Lucyszyn, "HFSSTM modelling anomalies with THz metal-pipe rectangular waveguide structures at room temperature," PIERS Online, Vol. 5, No. 3, 201-211, 2009.
doi:10.2529/PIERS080907072308
24. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd Edition, Wiley, 1994.
25. Montgomery, C. G., R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, Chapter 7, McGraw-Hill, 1948.