Vol. 151
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-05-24
Lossy Spherical Cavity Resonators for Stress-Testing Arbitrary 3D Eigenmode Solvers
By
Progress In Electromagnetics Research, Vol. 151, 151-167, 2015
Abstract
A lossy metal-wall cavity resonator that extends well beyond perturbation theory limits is studied. An exact analytical solution is employed for the spherical cavity resonator, having walls transformed from being a perfect electrical conductor (PEC) to free space. This model then acts as an ideal benchmark reference standard. A plane-wave approximation is then derived. Independent full-wave numerical modeling of the spherical cavity resonator is undertaken using eigenmode solvers within two well-known commercial, industry-standard, simulation software packages (HFSS™ and COMSOL). It has been found that the plane-wave approximation model accurately characterizes the results generated by these solvers when equivalent finite conductivity boundary (FCB) and layered impedance boundary (LIB) conditions are used. However, the impedance boundary (IB) condition is accurately characterized by the exact model, but the precise value of complex wave impedance at the wall boundary for the specific resonance mode must first be known a priori. Our stress-testing results have profound implications on the usefulness of these commercial solvers for accurately predicting eigenfrequencies of lossy arbitrary 3D structures. For completeness, an exact series RLC equivalent circuit model is given specifically for a spherical cavity resonator having arbitrary wall losses, resulting in the derivation of an extended perturbation model.
Citation
Stergios Papantonis, and Stepan Lucyszyn, "Lossy Spherical Cavity Resonators for Stress-Testing Arbitrary 3D Eigenmode Solvers," Progress In Electromagnetics Research, Vol. 151, 151-167, 2015.
doi:10.2528/PIER15031702
References

1. Hansen, W. W., "A type of electrical resonator," J. Appl. Phys., Vol. 9, No. 10, 654-663, Oct. 1938.
doi:10.1063/1.1710371

2. Barrow, W. L. and W. W. Mieher, "Natural oscillations of electrical cavity resonators," IRE Proc., Vol. 28, No. 4, 184-191, Apr. 1940.
doi:10.1109/JRPROC.1940.228082

3. Gallagher, S. and W. J. Gallagher, "The spherical resonator," IEEE Trans. Nucl. Sci., Vol. 32, No. 5, 2980-2982, Oct. 1985.
doi:10.1109/TNS.1985.4334247

4. Nepal, N., Y. K. Kim, Y. S. Bae, I. S. Ko, M. H. Cho, and W. Namkung, "Design study on standing-wave linear accelerator," IEEE Proc. PAC 2001, Vol. 4, 2802-2804, Jun. 2001.

5. Shvets, G., "Optical polarizer/isolator based on a rectangular waveguide with helical grooves," Appl. Phys. Lett., Vol. 89, No. 14, 141127, Oct. 2006.
doi:10.1063/1.2355466

6. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

7. Otter, W. J., S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, "100 GHz ultra-high Q-factor photonic crystal resonators," Sensors and Actuators A: Physical, Vol. 217, 151-159, Sep. 2014.
doi:10.1016/j.sna.2014.06.022

8. Papantonis, S., N. M. Ridler, and S. Lucyszyn, "Rectangular waveguide enabling technology using holey surfaces and wire media metamaterials," Sensors and Actuators A: Physical, Vol. 209, 1-8, Mar. 2014.
doi:10.1016/j.sna.2014.01.005

9. Maier, S. A., Plasmonics: Fundamentals and Applications, Springe, 2007.

10. Papantonis, S., S. Lucyszyn, and E. Shamonina, "Dispersion effects in Fakir’s bed of nails metamaterial waveguides," J. Appl. Phys., Vol. 115, No. 5, 054903, Feb. 2014.
doi:10.1063/1.4863461

11. Choi, J. Y. and S. Lucyszyn, "HFSS modelling anomalies with electrically thin-walled metal-pipe rectangular waveguide simulations," 10th IEEE High Frequency Postgraduate Student Colloquium (10th HF-PgC) Digest, 95-98, Leeds, Sep. 2005.

12. Episkopou, E., S. Papantonis, W. J. Otter, and S. Lucyszyn, "Defining material parameters in commercial EM solvers for arbitrary metal-based THz structures," IEEE Trans. Terahertz Sci. Technol., Vol. 2, No. 4, 513-524, Sep. 2012.
doi:10.1109/TTHZ.2012.2208456

13. Slater, J. C., "Microwave electronics," Rev. Mod. Phys., Vol. 18, No. 4, 441-512, Oct. 1946.
doi:10.1103/RevModPhys.18.441

14. Hadidi, A. and M. Hamid, "Analysis of a cylindrical cavity resonator with absorbing wall," Int. J. Electronics, Vol. 63, No. 3, 435-442, Mar. 1987.
doi:10.1080/00207218708939148

15. Gastine, M., L. Courtois, and J. L. Dormain, "Electromagnetic resonances of free dielectric spheres," IEEE Trans. Microw. Theory Techn., Vol. 15, No. 12, 694-700, Dec. 1967.
doi:10.1109/TMTT.1967.1126568

16. Collin, R. E., Field Theory of Guided Waves, 2nd Edition, IEEE Press, 1991.

17. Lucyszyn, S. and Y. Zhou, "Engineering approach to modelling frequency dispersion within normal metals at room temperature for THz applications," Progress In Electromagnetics Research, Vol. 101, 257-275, 2010.
doi:10.2528/PIER09121506

18. Zhou, Y. and S. Lucyszyn, "Modelling of reconfigurable terahertz integrated architecture (RETINA) SIW structures," Progress In Electromagnetics Research, Vol. 105, 71-92, 2010.
doi:10.2528/PIER10041806

19. Jiang, J., R. Saito, A. Grueneis, G. Dresselhaus, and M. S. Dresselhaus, "Electron-photon interaction and relaxation time in graphite," Chem. Phys. Lett., Vol. 392, 383-389, 2004.
doi:10.1016/j.cplett.2004.05.097

20., http://www.ansys.com/products/hf/hfss/.

21., http://www.comsol.com/.

22. Pozar, D. M., Microwave Engineering, 2nd Edition, Wiley, 1998.

23. Zhou, Y. and S. Lucyszyn, "HFSSTM modelling anomalies with THz metal-pipe rectangular waveguide structures at room temperature," PIERS Online, Vol. 5, No. 3, 201-211, 2009.
doi:10.2529/PIERS080907072308

24. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd Edition, Wiley, 1994.

25. Montgomery, C. G., R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, Chapter 7, McGraw-Hill, 1948.