Vol. 63
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-06-23
Decomposition of Electromagnetic q and P Media
By
Progress In Electromagnetics Research B, Vol. 63, 79-93, 2015
Abstract
Two previously studied classes of electromagnetic media, labeled as those of Q media and P media, are decomposed according to the natural decomposition introduced by Hehl and Obukhov. Six special cases based on either non-existence or sole existence of the three Hehl-Obukhov components, are defined for both medium classes.
Citation
Ismo Veikko Lindell, and Alberto Favaro, "Decomposition of Electromagnetic q and P Media," Progress In Electromagnetics Research B, Vol. 63, 79-93, 2015.
doi:10.2528/PIERB15030901
References

1. Capolino, F., Theory and Phenomena of Metamaterials, CRC Press, Boca Raton, FL, 2009.
doi:10.1201/9781420054262

2. Cheng, D. K. and J. A. Kong, "Covariant descriptions of bianisotropic media," Proc. IEEE, Vol. 56, No. 3, 248-251, 1968.
doi:10.1109/PROC.1968.6268

3. Kong, J. A., "Theorems of bianisotropic media," Proc. IEEE, Vol. 60, No. 9, 1036-1046, 1972.
doi:10.1109/PROC.1972.8851

4. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, 2005.

5. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd Edition, University Press, Oxford, 1995.

6. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048

7. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, New York, 2004.
doi:10.1002/0471723096

8. Lindell, I. V., Multiforms, Dyadics and Electromagnetic Media, Wiley, Hoboken, NJ, 2015.

9. Hehl, F. W. and Yu. N. Obukhov, Foundations on Classical Electrodynamics, Birkhauser, Boston, 2003.

10. Lindell, I. V., L. Bergamin, and A. Favaro, "The class of electromagnetic P-media and its generalization," Progress In Electromagnetics Research B, Vol. 28, 143-162, 2011.

11. Lindell, I. V. and H. Wallen, "Differential-form electromagnetics and bianisotropic Q-media," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 957-968, 2004.
doi:10.1163/156939304323105772

12. Lindell, I. V. and H. Wallen, "Generalized Q-media and field decomposition in differential-form approach," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1045-1056, 2004.
doi:10.1163/1569393042955397

13. Favaro, A., "Recent advances in electromagnetic theory,", Ph.D. Thesis, Imperial College, London, 2012.

14. Ni, W.-T., "Spacetime structure and asymmetric metric from the premetric formulation of electromagnetism," Phys. Lett. A, Vol. 379, 1297-1303, 2015.
doi:10.1016/j.physleta.2015.03.004

15. Einstein, A. and E. G. Straus, "A generalization of the relativistic theory of gravitation, II," Ann. Math., Vol. 47, No. 4, 731-741, 1946.
doi:10.2307/1969231

16. Schrodinger, E., Space-time Structure, Cambridge University Press, Cambridge, 1950.

17. Lindell, I. V. and A. Favaro, "Electromagnetic media with no dispersion equation," Progress In Electromagnetics Research B, Vol. 51, 269-289, 2013.
doi:10.2528/PIERB13033107

18. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

19. Lindell, I. V. and A. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. Antennas Propag., Vol. 57, No. 3, 694-700, Mar. 2009.
doi:10.1109/TAP.2009.2013431

20. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary condition and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, No. 2, 026604-7, 2009.
doi:10.1103/PhysRevE.79.026604

21. Lindell, I. V. and A. Sihvola, "Soft-and-hard/DB boundary conditions realized by a skewon-axion medium," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 768-774, 2013.
doi:10.1109/TAP.2012.2223445

22. Zhang, B., H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904, 2008.
doi:10.1103/PhysRevLett.100.063904

23. Yaghjian, A. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022, 2008; ``Corrigendum,'' Ibid, Vol. 11, 039802, 2009.
doi:10.1088/1367-2630/10/11/115022

24. Yaghjian, A., "Extreme electromagnetic boundary conditions and their manifestation at the inner surfaces of spherical and cylindrical cloaks," Metamaterials, Vol. 4, 70-76, 2010.
doi:10.1016/j.metmat.2010.03.006

25. Shahvarpour, A., T. Kodera, A. Parsa, and C. Caloz, "Arbitrary electromagnetic conductor boundaries using Faraday rotation in a grounded ferrite slab," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 11, 2781-2793, 2010.
doi:10.1109/TMTT.2010.2078010

26. El-Maghrabi, H. M., A. M. Attiya, and E. A. Hashish, "Design of a perfect electromagnetic conductor (PEMC) boundary by using periodic patches," Progress In Electromagnetics Research M, Vol. 16, 159-169, 2011.
doi:10.2528/PIERM10112201

27. Zaluski, D., D. Muha, and S. Hrabar, "DB boundary based on resonant metamaterial inclusions," Metamaterials’ 2011, 820-822, Barcelona, Oct. 2011.

28. Zaluski, D., S. Hrabar, and D. Muha, "Practical realization of DB metasurface," Appl. Phys. Lett., Vol. 104, 234106, 2014.
doi:10.1063/1.4883405

29. Khalid, M., N. Tedeschi, and F. Frezza, "On a lossy electric-magnetic uniaxial medium and its applications to boundary conditions," IEEE Trans. Antennas Propag., Vol. 63, 1686-1692, 2015.
doi:10.1109/TAP.2015.2393873

30. Prasolov, V. V., Problems and Theorems in Linear Algebra, American Mathematical Society, Providence, RI , 1994.