Vol. 150
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-04-03
An Adaptive Path Loss Channel Model for Wave Propagation in Multilayer Transmission Medium
By
Progress In Electromagnetics Research, Vol. 150, 1-12, 2015
Abstract
Advances in micro robots in non-invasive medicine have enabled physicians to perform diagnostic and therapeutic procedures with higher resolution and lower risk than before. However, navigation and precise localisation of such micro robots inside human body still remains a challenge. This is mostly due to the 1) lack of precise communication channel models, 2) inhomogeneity of the propagation medium and 3) non-geometric boundaries of the tissues morphometric parameters. In this study, we derive novel intra-body path loss channel models for wave propagation in wireless capsule endoscopy, i.e., propagation through the gastrointestinal tract and the abdominal wall. We formulate an adaptive attenuation parameter as a function of permittivity, conductivity and the thickness of various layers between the transmitter and the receiver. The standard deviation of modelling error of the path loss using our adaptive channel model is smaller than 50% of that of existing channel models. We further analyse the sensitivity of the path loss model to the variations of thickness of different abdominal wall layers. We finally show that the thickness of the fat layer has the greatest influence on the total attenuation parameter of the path loss model and therefore, we modify our adaptive model accordingly.
Citation
Mohammad H. Ramezani, Victoria Blanes-Vidal, and Esmaeil S. Nadimi, "An Adaptive Path Loss Channel Model for Wave Propagation in Multilayer Transmission Medium," Progress In Electromagnetics Research, Vol. 150, 1-12, 2015.
doi:10.2528/PIER15030702
References

1. Than, T. D., G. Alici, H. Zhou, and W. Li, "A review of localization systems for robotic endoscopic capsules," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 9, 2387-2399, 2012.
doi:10.1109/TBME.2012.2201715

2. Hu, C., M. Q. Meng, and M. Mandal, "magnetic localization and orientation technique for capsule endoscopy," IEEE ‘IROS’, 628-633, 2005.

3. Salerno, M., G. Ciuti, G. Lucarini, R. Rizzo, P. Valdastri, A. Menciassi, A. Landi, and P. Dario, "A discrete-time localization method for capsule endoscopy based on on-board magnetic sensing," Measurement Science and Technology, Vol. 23, 015701, 2012.
doi:10.1088/0957-0233/23/1/015701

4. Pahlavan, K., Y. Ye, R. Fu, and U. Khan, "Challenges in channel measurement and modeling for RF localization inside the human body," International Journal of Embedded and Real-Time Communication Systems, Vol. 3, No. 3, 18-37, 2012.
doi:10.4018/jertcs.2012070102

5. Fischer, D., R. Shreiber, G. Meron, M. Frisch, H. Jacob, A. Glukhovsky, and A. Engel, "Localization of the wireless capsule endoscope in its passage through theGI tract," Gastrointestinal Endoscopy, Vol. 53, AB126, 2001.

6. Fischer, D., "Capsule endoscopy: The localization system," Gastrointestinal Endoscopy Clin., North Amer., Vol. 14, 25-31, 2004.
doi:10.1016/j.giec.2003.10.020

7. Abbasi, Q. H., A. Sani, A. Alomainy, and Y. Hao, "Numerical characterization and modeling of subject-specific ultrawideband body-centric radio channels and systems for healthcare applications," IEEE Transactions on Information Technology in Biomedicine — TITB, Vol. 16, No. 2, 221-227, 2012.
doi:10.1109/TITB.2011.2177526

8. Fort, A., C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, "An ultra-wideband body area propagation channel model — From statistics to implementation," IEEE Trans. on Microwave Theory and Techniques, Vol. 54, No. 4, 1820-1826, 2006.
doi:10.1109/TMTT.2006.872066

9. Fort, A., J. Ryckaert, C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, "Ultra-wideband channel model for communication around the human body," IEEE Journal on Selected Areas in Communications, Vol. 24, No. 4, 927-933, 2006.
doi:10.1109/JSAC.2005.863885

10. Liu, L., R. D’Errico, L. Ouvry, P. De Doncker, and C. Oestges, "Dynamic channel modeling at 2.4GHz for on-body area networks," Advances in Electronics and Telecommunications, Vol. 2, No. 4, 18-27, 2011.

11. Takada, J., T. Aoyagi, K. Takizawa, N. Katayama, H. Sawada, T. Kobayashi, K. Y. Yazdandoost, H. Li, and R. Kohno, "Static propagation and channel models in body area," COST 2100 6th Management Committee Meeting, Lille, France, 2008.

12. Aoyagi, T., K. Takizawa, T. Kobayashi, J. Takada, and R. Kohno, "Development of a WBAN channel model for capsule endoscopy," Proceedings of the Antennas and Propagation Society International Symposium, 1-4, 2009.

13. Kiourti, A., K. A. Psathas, and K. S. Nikita, "Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges C," Wiley Bioelectromagnetics, Vol. 35, No. 1, 1-15, 2014.
doi:10.1002/bem.21813

14. Basar, M. R., F. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, and L. Mohamed, "The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 133, 495-513, 2013.
doi:10.2528/PIER12091203

15. Lopez-Linares Roman, K., G. Vermeeren, A. Thielens, W. Joseph, and L. Martens, "Characterization of path loss and absorption for a wireless radio frequency link between an in-body endoscopy capsule and a receiver outside the body," EURASIP Journal on Wireless Communications and Networking, Vol. 21, 2014.

16. Kurup, D., W. Joseph, G. Vermeeren, and L. Martens, "Path loss model for in-body communication in homogeneous human muscle tissue," Electronics Letters, Vol. 45, No. 9, 453-454, 2009.
doi:10.1049/el.2009.3484

17. Xu, L. S., M. Q. H. Meng, and Y. W. Chan, "Effects of dielectric parameters of human body on radiation characteristics of ingestible wireless device at operating frequency of 430 MHz," IEEE Transactions on Biomedical Engineering, Vol. 56, No. 8, 2083-2094, 2009.
doi:10.1109/TBME.2009.2021157

18. Wang, L., C. Hu, T. L. Tian, M. Li, and M. Q. H. Meng, "A novel radio propagation radiation model for location of the capsule in GI tract," Proc. IEEE Int. Conf. Rob. Biomimetics, 2332-2337, 2009.

19. Swar, P., K. Pahlavan, and U. Khan, "Accuracy of localization system inside human body using a fast FDTD simulation technique," 6th International Symposium on Medical Information and Communication Technology (ISMICT), 1-6, 2012.

20. Støa, S., R. Chavez-Santiago, and I. Balasingham, "An ultra wideband communication channel model for the human abdominal region," GLOBECOM Workshops (GC Wkshps), 246-250, 2010.

21. Sayrafian-Pour, K., W.-B. Yang, J. Hagedorn, J. Terrill, and K. Y. Yazdandoost, "A statistical path loss model for medical implant communication channels," IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2995-2999, Sep. 13–16, 2009.

22. Nadimi, E. S. and V. Tarokh, "Bayesian source localization in networks with heterogeneous transmission medium," Navigation, Vol. 59, No. 3, 163-175, Washington, 2012.
doi:10.1002/navi.13

23. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Report N.AL/OE-TR-1996-0037, Occupational and Environmental Health Directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas, USA, 1996, Available: http://www.itis.ethz.ch/itis-for-health/tissue-properties/database/dielectric-properties/.

24. Theilmann, P. T., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.
doi:10.2528/PIERB11112111

25. Thiel, F. and F. Seifert, "Noninvasive probing of the human body with electromagnetic pulses: Modeling of the signal path," J. Appl. Phys., Vol. 105, No. 4, 044904-1-044904-9, 2009.
doi:10.1063/1.3077299

26. Varotto, G. and E. M. Staderini, "A 2D simple attenuation model for EM waves in human tissues: Comparison with a FDTD 3D simulator for UWB medical radar," IEEE International Conference on UltraWideband (ICUWB), Vol. 3, 1-4, 2008.

27. Pozar, D. M., Microwave Engineering, 4th Edition, JohnWiley & Sons, Inc., 2011.

28. Takizawa, K., H. Hagiwara, and K. Hamaguchi, "Path-loss estimation of wireless channels in capsule endoscopy from X-ray CT images," 33rd Annual International Conference of the IEEE EMBS, 2242-2245, Boston, Massachusetts, USA, Aug. 30–Sep. 3, 2011.

29. Zhao, J., D. Liao, and B. P. McMahon, "Functional luminal imaging probe geometric and histomorphologic analysis of abdominal wall wound induced by different trocars in pigs," Surg. Endosc., Vol. 23, 1004-1012, 2009.
doi:10.1007/s00464-008-0105-8

30. Cheng, L., C. Wu, Y. Zhang, H. Wu, M. Li, and C. Maple, "A survey of localization in wireless sensor network," Int. J. Distrib. Sens. Netw., Vol. 2012, 1-12, 2012.
doi:10.1155/2012/962523

31. Orfanidis, S. J., Electromagnetic Waves and Antennas, Online Book, 1999.