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An Adaptive Path Loss Channel Model for Wave Propagation
in Multilayer Transmission Medium
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Abstract—Advances in micro robots in non-invasive medicine have enabled physicians to perform
diagnostic and therapeutic procedures with higher resolution and lower risk than before. However,
navigation and precise localisation of such micro robots inside human body still remains a challenge.
This is mostly due to the 1) lack of precise communication channel models, 2) inhomogeneity of the
propagation medium and 3) non-geometric boundaries of the tissues morphometric parameters. In this
study, we derive novel intra-body path loss channel models for wave propagation in wireless capsule
endoscopy, i.e., propagation through the gastrointestinal tract and the abdominal wall. We formulate an
adaptive attenuation parameter as a function of permittivity, conductivity and the thickness of various
layers between the transmitter and the receiver. The standard deviation of modelling error of the
path loss using our adaptive channel model is smaller than 50% of that of existing channel models. We
further analyse the sensitivity of the path loss model to the variations of thickness of different abdominal
wall layers. We finally show that the thickness of the fat layer has the greatest influence on the total
attenuation parameter of the path loss model and therefore, we modify our adaptive model accordingly.

1. INTRODUCTION

Recent advances in the development of micro robots for non-invasive medical procedures have enabled
physicians to perform examinations with higher reliability and less pain than before. As an example,
wireless capsule endoscopy for gastrointestinal (GI) tract disease monitoring is a powerful diagnostic
tool that offers functional information as the capsule moves passively through the GI tract. It yields
greater magnification than traditional endoscopy while providing excellent resolution. However, even
with these technological advances, certain limitations due to the lack of precise spatial information still
remain in the navigation and localisation of the capsule [1].

Since capsule localisation is directly based on the estimation of the distance between the capsule
and a set of receivers placed outside the body, enhancing the estimation of this distance results in
localisation improvement. Various methods have been introduced for distance estimation, such as
magnetic field intensity [2, 3], time of arrival (TOA) [4] and the received signal strength indicator
(RSSI) [5, 6]. The magnetic-based and the TOA-based solutions have received less attention than the
RSSI-based solutions due to the fact that the first ones enlarge the capsule (since they need a permanent
or a transient magnet) while the second ones require precise synchronisation between the transmitter
and the receiver, at the cost of extra synchronous clocks. The RSSI-based solutions, on the other hand,
have been more attractive for many researchers due to their simplicity and low cost, even though they
suffer from low precision and high dependency on the propagation medium properties. Localisation of an
endoscopic capsule for GI tract monitoring with an error margin ranging from 3 to 10 cm is acceptable.
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Variations in the electromagnetic properties (i.e., permittivity ε′ and conductivity σ) of the
transmission medium directly affect the precision of the model describing the communication channel
between the transmitter (e.g., endoscopic capsule) and the receiver. Path loss channel models of human
body as a function of distance with constant attenuation coefficient have been modelled under different
scenarios in body area networking, such as around the body [7–9], on the body [10, 11] and inside
the body [2, 12–16]. In these studies, the human body was assumed as a homogeneous transmission
medium. However, human body is an inhomogeneous transmission medium due to the presence of
different tissues (such as fat, muscle and lumen) with different ε′ and σ and physical thicknesses,
in addition to enhanced shadowing, multi-path fading and reflection. Furthermore, some studies
simulated the wave propagation inside human body using a Finite-Difference-Time-Domain (FDTD)
based numerical software (SEMCAD) [7, 17–19]. Other more rigorous studies considered the variation
in model parameters with human age [9] and the sensitivity of the path loss model to the dielectric
parameters of different tissues [10]. The analysis of the stochastic nature of the uncertainties has been
conducted in [9, 11, 20, 21]. In [4], variations of the attenuation coefficient for different genders, heights,
and other individual properties (as those described in [7, 15]) have been investigated. A probability
distribution for path loss exponent including the effect of inhomogeneity in tissues ε′ was derived in [22].
All these studies and our future studies involving the use of animal subjects or humans have been carried
out in accordance with the EU Directive 2010/63/EU for animal and human experiments.

In addition to the inhomogeneity of the human body, the differences in electromagnetic properties
(ε′ and σ) among the abdominal wall layers affect the path loss channel model. For instance, ε′ and σ
of muscle are approximately five and ten times larger than those of fat, respectively [23]. In addition,
inter-individual variability and non-geometric boundaries of the tissues morphometric parameters call
for a more precise path loss model with adaptive attenuation coefficient.

The first objective of this study is to investigate the effect of the thickness of different abdominal
wall layers on the path loss model between the transmitter and the receivers. The impact of the
variations of electromagnetic properties of the abdominal wall layers on the path loss model has been
well studied in the literature. This study provides information on the effect of the variations of the
thickness of the abdominal wall layers on the path loss model and the accuracy of distance estimation.
We derive a multilayer channel model (hereafter referred to as “MultiLayer Model”) of the transmission
medium and study the effect of thickness variations on the models performance. The second objective of
this study is to derive an adaptive model of the path loss as a function of the thickness of the abdominal
wall layers (referred to as “Adaptive Model”) where the medium is considered as a single layer model.
In this model, we define an adaptive attenuation parameter α dependent on ε′, σ and the thickness
of different layers. We propose two methods to estimate α, one based on the measurements of the
total reflected power and another using weighted means of ε′, σ and the thickness of the layers. We
further show that, in spite of the inequality of distances between the transmitter and various receivers
on the body, this model significantly improves the path loss estimation. Finally, we derive another
single layer-based channel model of the medium in which the attenuation parameter in the path loss
model is the solution to an optimisation problem over different layer thicknesses. This model is referred
to as the “Fixed-Optimised-Model”. Using Monte Carlo simulation, the performance of the Adaptive
Model and the Fixed-Optimised-Model are then compared with that of the MultiLayer-model. The
main shortcoming of the MultiLayer Model, Adaptive-Model and the Fixed-Optimised-Model is their
dependency on the values of the thickness of different layers. We therefore derive a novel adaptive
model, referred to as “Adaptive Model 2” in which only the thickness of the fat layer is required and
the thickness of the other layers are set to their nominal values.

2. MULTILAYER CHANNEL MODELLING

In this section, the transmission medium (i.e., abdominal wall) is modelled as a multilayer medium and
we derived the time-average power at each location inside the medium and the total reflected power as
a function of layers electromagnetic properties.
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2.1. Time-Average Power

In this study, we model the abdominal wall as a multilayer medium composed of homogenous slabs [24–
26]. Figure 1(a) shows the multilayer structure of the abdominal wall and Figure 1(b) describes the
propagation of waves in a lossy multilayer structure. Considering electric (E) and magnetic (H) fields
as being linearly polarised along x and y direction, respectively, and propagating along the z direction,
E(z) and H(z) at each location along the z axis can be computed as a function of forward and backward
electric fields (E+(z), E−(z)) as follows:⎧⎨

⎩
E(z) = E+(z) + E−(z)

H(z) =
1

η(z)
(E+(z) − E−(z))
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Figure 1. (a) Multilayer structure of the abdominal wall. (b) Propagation of electric field throughout
a multilayer medium.
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where η(z) is the characteristic impedance of the nonmagnetic material described as:

η(z) =
1

n(z)
η0 (2)

η0 is the characteristic impedance of the vacuum and n the refractive index of the material. For a lossy
material, n is a function of permittivity (ε′) and conductivity (σ) as follows:

n =
√

εr =
√

ε′ − jε′′ =
√

ε′ − jσ

ε0ω
(3)

In Eq. (3), ε0 is the permittivity of vacuum and ω the angular frequency. Now, using the matching
and propagation matrices for transverse fields, the layer recursions for multiple dielectric slabs can be
derived. The layer recursions represent the electric fields in each location along the z axis (E±(z))
as a function of incident electric field (Please refer to Appendix A). Substituting E±(z) in (1), the
time-average power for this linearly polarised plane wave can be calculated using the pointing vector as
follows:

Pav(z) = Pr−ML(z) =
1
2
Re (E(z)H∗(z)) (4)

2.2. Total Reflected Power

An incident field to a multilayer medium results in transmitted power, reflected power and power
loss depending on the characteristics of the layers, i.e., thickness, ε′ and σ. Having access to the
measurements of Ei,− and given that the reflected coefficient Γi at each interface i is the ratio of Ei,−
to Ei,+ in that interface i, the relationship between Ei,− and the medium parameters are derived as
follows:

Γi =
Ei,−
Ei,+

(5)

Furthermore, the first scattering parameter, s11, is the ratio of the power parameters b1 and a1:

s11 =
b1

a1
(6)

where in condition that the characteristic impedance of the left dielectric medium, i.e., ηa, is real (which
is a realistic assumption given that the left dielectric layer is part of the measuring probe), b1 and a1

are as follows:
b1 =

E1,−√
ηa

, a1 =
E1,+√

ηa
(7)

Substituting (7) into (6) yields:

s11 =
E1,−
E1,+

= Γ1 (8)

Given the reflected coefficient Γ1 of the first interface, the input impedance Z1 can be calculated using
the following equation:

Z1 = ηa
1 + Γ1

1 − Γ1
(9)

Since the input impedance of an infinitely large and homogeneous medium is equal to the characteristic
impedance of that medium, the value of Z1 for a multilayer medium can be interpreted as the effective
characteristic impedance of the whole medium:

Z1 = ηeff (10)

using (2) and (3), the effective value for permittivity (ε′eff ) and conductivity (σeff ) of the whole medium
can be calculated as follows:

Z1 = η0

(
ε′eff +

jσeff

ε0ω

)− 1
2

(11)
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Figure 2. Estimated permittivity from reflected power. (a) f = 434 MHz. (b) f = 2450 MHz.

The assumption of infinitely largeness of the medium under test poses a constraint on the minimum
thickness of the material needed to be considered semi-infinite. This minimum thickness depends on
the ε′ of the material and the angular frequency of the propagated wave. Estimated values of ε′eff of the
abdominal wall of a pig with the nominal values of ε′ and σ at 434 MHz and 2.4 GHz are presented in
Figure 2. It can be readily inferred that the sensitivity of ε′eff and therefore the reflected power to the
variations of the layers’ thickness when below the minimum thickness (20 cm at 434 MHz and 7 cm at
2.45 GHz), is significant.

3. ADAPTIVE PATH LOSS MODEL

In this section, we derive a general model for the received power (path loss) as a function of the
attenuation parameter and distance measurements between the transmitter and the receiver in a single
layer medium. We further extend our model to a multilayer medium with M layers and derive the new
total attenuation parameter based on the physical and electromagnetic properties of the layers.

3.1. Path Loss: Single Layer Medium

For a lossy medium with relative permittivity ε′ and conductivity σ, the propagation of E− and E+ are
presented by the following equation [27]:

E±(z) = E0±e∓γz (12)

where γ is the complex propagation constant defined as below:

γ = α + jβ = jω
√

με0ε′
√

1 − σ

jωε0ε′
(13)

in which α and β are attenuation and phase constants, respectively. Separating the amplitude and the
phase of the E field elements as: {

E+(z) = E0+ e−αze−jβz

E−(z) = E0− eαzejβz (14)

and assuming a dominant value for the amplitude of the forward term, i.e.:

E0+ e−αz � E0−eαz (15)
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The time-average power can be simplified as follows:

Pav(z) ≈ 1
2Re(η)

|E+(z)|2 =
1

2Re(η)
e−2αz (16)

The path loss (dB) has the following form:

PLdB = 10 log10 Pav(d0) − 10 log10 Pav(d) ≈ −20 log10 e−αd (17)

where d is the distance between the transmitter and the receiver and the power in d0 is set to 0 dB.

3.2. Attenuation Parameter: Multilayer Medium

In Eq. (17), the attenuation parameter α represents the rate of path loss with respect to d. In the case
of a single layer medium, α is a function of ε′ and σ of the medium (Eq. (13)), while in a multilayer
medium, it depends on ε′, σ and the thickness of all layers. In order to estimate α in the multilayer
case, the whole medium can be considered as a single layer medium with effective values for ε′ and σ.
These values can either be estimated by measuring s11 (using Eq. (18)) or as in this study, by deriving
the weighted average of ε′ and σ of all layers [28], i.e.:

ε̄ ′ =

M∑
i=1

ε′ili

M∑
i=1

li

, σ̄ =

M∑
i=1

σili

M∑
i=1

li

(18)

where li, ε′i and σi are the thickness, permittivity and conductivity of the ith layer, respectively.
Consequently, the attenuation parameter for the multilayer medium αad can be estimated as follows:

αad = Re

(
jω

√
με0ε̄ ′

(
1 − σ̄

jωε0 ε̄ ′

))
(19)

Since αad is a function of the thicknesses of the layers, the model varies in an adaptive manner and we
will refer to this model as the Adaptive Model.

4. SIMULATION RESULTS

In this section, we present the performance of several models for the propagation of EM wave through
the abdominal wall. The structure of these models are presented in Figure 3. The first model, referred
to as Multilayer Model, is based on the structure presented in Figure 1(b) and is the most accurate
model as the precise values of ε′, σ and li of each layer is required. The second model, referred to as the
Fixed-Optimised-Model, is the solution to an optimisation problem minimising RMSE of the received
powers after 20, 000 Monte Carlo simulations. The third model is the adaptive model presented in the
previous section by Eqs. (24)–(26), (i.e., Adaptive Model). The forth model (Adaptive Model 2) is an
applied realisation of the Adaptive Model and will be derived in the following section. We assumed
Gaussian distribution over the thickness of all layers with mean and standard deviations equal to the
nominal values and 20% of the nominal values of layer thickness, respectively.

Furthermore, the sensitivity analysis of the received power to the variations of tissue properties
around their nominal value is investigated.

4.1. Multilayer Simulation and Sensitivity Analysis

During a capsule endoscopy, the transmission interface between the transmitter and the receivers is
composed of lumen, the wall of intestine, fascia, muscle, fat and skin with thickness nominal values
of approximately 3, 2, 4, 20, 25 and 2mm, respectively [29]. Figure 4 shows the trend of power loss
through the abdominal wall with vertical grids indicating the interfaces between different layers. It can
be readily inferred from the figure that the rate of power loss variations vary significantly from one
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layer to another one. As instance, path loss in the fat layer is much smaller than that of a thinner
muscle layer (1.5 dB compared to 3.3 dB). This difference is due to the large difference between the
electromagnetic characteristics of the two layers since ε′ and σ of muscle are almost 5 and 10 times
larger than those of fat, respectively. As a result, the ratio of the layers thickness has an impact on the
path loss channel model. It can be inferred from Figure 3 that the slope of the curve (received power
vs. distance) throughout the medium in the Adaptive Model is not constant indicating that this model
estimates different attenuation rates for the received power at different layers.

Eqs. (1)−(11)  

Eqs. (12)−(18)
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Figure 3. Structure of multilayer, fixed, Adaptive Model and Adaptive Model 2.
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In order to investigate the effect of the variations of thickness ratio of the different layers (sensitivity
analysis), the received power estimated by the Multilayer Model and Adaptive Model in Figure 4 with
nominal values of tissue properties are compared with two other cases. These two cases address different
fat to muscle thickness ratios while keeping the distance between the transmitter and the receiver as
nominal (56 mm). In Case-1 the ratio of fat to muscle thickness is set to 15

30 while in Case-2 the ratio is
35
10 . Nominal Case is referred to the nominal value of the ratio (25

20 ). The received power vs. distance for
Case-1, Case-2, Nominal Case and that of the Fixed-Optimised Model are presented in Figure 5. It can
be seen that, although the Adaptive Model cannot precisely model the path loss in different abdominal
wall layers, its performance is still more accurate than that of the Fixed-Optimised Model due to the
inclusion of the thickness of the layers.

4.2. Statistical Analysis of the Path Loss Models

In order to investigate the effect of thickness variation of the layers in the aforementioned scenarios, we
assume Gaussian distribution over the thickness of all layers with mean and standard deviations equal
to the nominal values and 20% of the nominal values of layer thickness, respectively. The simulations
are performed 20, 000 times using Monte Carlo method and the received powers in different scenarios
are calculated using the multilayer model. The errors, i.e., ead and efix of the single layer-based models
(Adaptive-Model and Fixed-Optimised-Model) are as follows:

Adaptive Model: Pr−ad (dB) = 10 log10 e−αad d, ead = Pr−ML − Pr−ad

Fixed Model: Pr−fix (dB) = 10 log10 e−αfix d, efix = Pr−ML − Pr−fix

(20)

where αfix is the optimal solution of the optimisation problem minimising RMSE among all simulated
conditions. The value of αad depends on ε′ and σ (Eqs. (18), (19)) which varies at each simulation.
The simulation results are shown in Figure 6 in which the distribution of errors of adaptive and fixed
models are presented. As it can be seen, the modelling error of αad (0.33) is smaller than half of that
of the fixed model (0.71).

The requirement of having access to all layer thicknesses in the adaptive model is the main
disadvantage of such a model. To address this shortcoming, we propose a solution that takes only
the thickness of the fat layer into account. It should be noted that Eq. (18) is a weighted average over
all layers, and therefore the thickest layers (i.e., muscle and fat) have more impact on the final results
than the thinner ones. Therefore, given that ε′ and σ of fat are significantly different from those of
other tissues, variations of the fat thickness have the most influence on the effective values. Furthermore,
the thickness of the fat layer can be estimated using straightforward medical tests. Measurement of
the thickness of the fat layer around the abdominal wall can be readily carried out. Consequently,
the adaptive model is re-run assuming that only the fat thickness is known, while the value of other
thicknesses are set to their nominal values. The simulation results show that although the variance
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of the modelling error (0.41 in this case) is larger than that of the previous adaptive model, it is still
smaller than the fixed model. Figure 7 shows the density of the modelling error for the new adaptive
model.

4.3. Statistical Analysis of the Localisation Error

In order to investigate the performance of the proposed adaptive path loss model, localisation of an
unknown transmitter inside the large intestine using eight receivers (anchors) outside the body is
simulated. In this simulation, the transmitter node is located at the origin and the receivers are placed
in fixed azimuth and elevation directions (with varying distances) with respect to the transmitter as
follows:

[θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8] = [45 0 − 45 90 0 − 90 135 − 135]
[φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8] = [45 45 45 45 90 45 45 45]

(21)

The distances between the transmitter and the receivers depend on the thicknesses of the layers in
between which differ for the different sensors. In the simulations performed for 2500 different bodies
based on the Monte Carlo method, the thicknesses of the layers between the transmitter and each
receiver are considered Gaussian random variables with nominal mean value and 20% standard deviation.
Furthermore, the thickness of lumen, the wall of intestine and skin are assumed to be constant values
for all the 8 receivers. The received power in each receiver is computed using multilayer model while
the distance between the transmitter and each receiver is estimated using the Fixed-Optimised Model
and Adaptive Model 2 as follows:

d̂ad−2 =
Pr−ML (dB) − β

α′
ad−2

; α′
ad−2 =

20 αad−2

ln10
, β = E{ead−2}

d̂fix =
Pr−ML (dB)

α′
fix

; α′
fix =

20αfix

ln 10

(22)

Applying the multi-lateration algorithm [30], the location of the transmiter can be estimated using the
location of the 8 receivers: [

x̂
ŷ
ẑ

]
=
(
AT A

)−1
AT B (23)

where:

A = 2

⎡
⎢⎢⎢⎣

x1 − x8 y1 − y8 z1 − z8

x2 − x8 y2 − y8 z2 − z8
...

...
...

x7 − x8 y7 − y8 z7 − z8

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

d̂2
1 − d̂2

8

d̂2
2 − d̂2

8
...

d̂2
7 − d̂2

8

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

(
x2

8 + y2
8 + z2

8

)− (x2
1 + y2

1 + z2
1

)
(
x2

8 + y2
8 + z2

8

)− (x2
2 + y2

2 + z2
2

)
...(

x2
8 + y2

8 + z2
8

)− (x2
7 + y2

7 + z2
7

)

⎤
⎥⎥⎥⎦ (24)

in which (xi, yi, zi) is the coordinate of ith receiver sensor. The simulation results show that the
localisation RMSE using the Fixed-Optimised Model and Adaptive Model 2 are 17.8 mm and 10.9 mm,
respectively. Assuming that the standard deviation of the variation of layers thickness is 10 % of their
nominal value, this localisation error is reduced to 8.9 mm and 5.9 mm, respectively.

5. DISCUSSION AND CONCLUDING REMARKS

The impact of the variations of ε′ and σ of the abdominal wall layers on the path loss model has been
studied in the literature. Our study provides information on the effect of the variations of the thickness
of the abdominal wall layers on the attenuation parameter of the path loss model and the accuracy
of distance estimation. We derived two single layer-based models (i.e., Fixed-Optimised Model and
Adaptive Model) to estimate the distance between the transmitter and the receiver. The performance
of these two models was then investigated using Monte Carlo simulations. It was shown that the power
attenuation parameter α in a multilayer structure is a function of effective values of dielectric properties
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which in turn are functions of ε′, σ and the thickness of all layers. Assuming known values for the
thicknesses of the layers, our Adaptive Model reduced the standard deviation of the modelling error by
55% compared to that of the Fixed-Optimised Model with a constant attenuation parameter. This result
is especially important for endoscopic capsule localisation since the thicknesses of the layers between the
capsule and each of the receivers place on the body are unequal. We further studied the performance
of our Adaptive Model in a more realistic scenario in which the thicknesses of all layers composing the
medium are unknown. Our analysis showed that the thickness of the fat layer has the greatest influence
on the total effective permittivity of the abdominal medium, due to the large difference in ε′ and σ
compared to those of other layers.
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APPENDIX A. LAYER RECURSIONS FOR MULTIPLE DIELECTRIC SLABS

Defining E±,i and E′
±,i as the elements of the electric field in the left and right sides of the ith interface,

i.e.: {
Ei,± = E±(zi)

E′
i,± = E±(zi + 0+)

; i = 1, 2, . . . ,M + 1 (A1)

E±,i and E′
±,i in each interface i can be expressed as a function of E±,i+1 and E′

±,i+1 in the next interface
i + 1 by a recursive equation [31]:[

Ei,+

Ei,−

]
=

1
1 + ρi

[
ejδi ρie

−jδi

ρie
jδi e−jδi

] [
Ei+1,+

Ei+1,−

]
; i = M,M − 1, . . . , 1 (A2)

in which ρi and δi are the reflection coefficient and the phase thickness of the ith layer, respectively:

ρi =
ni−1 − ni

ni−1 + ni
, δi =

ωlini

c0
(A3)

ni and li are the refractive index and thickness of ith layer, and c0 is the speed of light in vacuum.
Assuming that the (M + 1)th layer is semi-infinite, the electric field in the (M + 1)th interface is given
by: [

EM+1,+

EM+1,−

]
=

1
1 + ρM+1

[
1 ρM+1

ρM+1 1

] [
E′

M+1,+

0

]
(A4)

Furthermore, the electric field at each location along the z axis inside the layer i can be written as a
function of E at the interface of the layer i + 1:[

E+(z)
E−(z)

]
zi<z≤zi+1

=

[
ejδ̂i 0

0 e−jδ̂i

][
Ei+1,+

Ei+1,−

]
; i = 1, 2, . . . ,M (A5)

where:

δ̂i =
ωl̂ini

c0
, l̂i = zi+1 − z (A6)

and for the last semi-infinite layer M + 1:[
E+(z)
E−(z)

]
zM+1<z

=

[
ejδM+1E′

M+1,+

0

]
; δM+1 =

ω lM+1nb

c0
, lM+1 = z − zM+1 (A7)
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