Vol. 53
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-04-10
A Compact Wideband Bandpass Filter Using a Coupled-Line Quad-Mode Resonator
By
Progress In Electromagnetics Research Letters, Vol. 53, 7-12, 2015
Abstract
A novel, compact wideband bandpass filter based on an improved quad-mode resonator is proposed in this paper. Due to the usage of a coupled-line section, the resonator has a quad-mode behavior. The resonant frequencies can be tuned by regulating not only the electrical lengths, but also the characteristic impedances. Owing to the symmetry of the construction, even- and odd-mode analysis is utilized to analyze the proposed resonator. Finally, a wideband bandpass filter with 88% (2.1 to 5.4 GHz) relative bandwidth is designed, fabricated, and measured. The measured results are in good agreement with the simulated ones, which demonstrates the feasibility of the design approach.
Citation
Lixia Nan, Yongle Wu, Weimin Wang, Shulan Li, and Yuan'an Liu, "A Compact Wideband Bandpass Filter Using a Coupled-Line Quad-Mode Resonator," Progress In Electromagnetics Research Letters, Vol. 53, 7-12, 2015.
doi:10.2528/PIERL15020201
References

1. Li, X. P. and X. Ji, "Novel compact UWB bandpass filers design with cross-coupling between λ/4 short-circuited stubs," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 1, 23-25, Jan. 2014.
doi:10.1109/LMWC.2013.2287231

2. Zhang, R. Q. and L. Zhu, "Design of a wideband bandpass filter with composite short- and open-circuited stubs," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 2, 96-98, Feb. 2014.
doi:10.1109/LMWC.2013.2291197

3. Jankovic, N. and V. Crnojevic-Bengin, "A compact wideband filter based on a grounded transversal resonator," IEEE Int. Conf. on Microw. Communications Antennas and Electronic Systems, 1-5, Tel Aviv, Israel, Oct. 2013.

4. Gao, L., X. Y. Zhang, B.-J. Hu, and Q. Xue, "Novel multi-stub loaded resonators and their applications to various bandpass filters," IEEE Trans. Microw. Theory Tech.,, Vol. 62, No. 5, 1162-1172, May 2014.
doi:10.1109/TMTT.2014.2314680

5. Xu, J., W. Wu, and C. Miao, "Compact and sharp skirts microstrip dual-mode dual-band bandpass filter using a single quadruple-mode resonator (QMR)," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 3, 1104-1113, Mar. 2013.
doi:10.1109/TMTT.2013.2238949

6. Feng, W. J., W. Q. Che, Y. M. Chang, S. Y. Shi, and Q. Xue, "High selectivity fifth-order wideband bandpass filters with multiple transmission zeros based on transversal signal-interaction concepts," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 89-97, Jan. 2013.
doi:10.1109/TMTT.2012.2227785

7. Zhu, L., S. Sun, and R. Li, Microwave Bandpass Filters for Wideband Communications, Chapters 4 and 5, Wiley, New Jersey, USA, 2012.
doi:10.1002/9781118197981

8. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 796-798, Nov. 2005.

9. Wang, H., Q.-X. Chu, and J.-Q. Gong, "A compact wideband microstrip filter using folded multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 5, 287-289, May 2009.
doi:10.1109/LMWC.2009.2017591

10. Nosrati, M. and M. Mirzaee, "Compact wideband microstrip bandpass filter using quasi-spiral loaded multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 11, 607-609, Nov. 2010.
doi:10.1109/LMWC.2010.2068570

11. Li, J., S.-S. Huang, and J. Z. Zhao, "Compact dual-wideband bandpass filter using a novel penta-mode resonator (PMR)," IEEE Microw. Wireless Compon. Lett., Vol. 24, 668-670, 2014.
doi:10.1109/LMWC.2014.2341014

12. Li, G. and X.-Y. Zhang, "High-selectivity dual-band bandpass filter using a quad-mode resonator with source-load coupling," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 9, 474-476, Sep. 2013.
doi:10.1109/LMWC.2013.2274995

13. Sun, S.-J., T. Su, K. Deng, B. Wu, and C.-H. Liang, "Compact microstrip dual-band bandpass filter using a novel stub-loaded quad-mode resonator," IEEE Microw. Wireless. Compon. Lett., Vol. 23, No. 9, 465-467, Sep. 2013.
doi:10.1109/LMWC.2013.2274038

14. Chen, F. C., Q. X. Chu, Z. H. Li, and X. H. Wu, "Compact dual-band bandpass filter with controllable bandwidths using stub-loaded multiple-mode resonator," IET Proc. Microw., Antennas Propag., Vol. 6, No. 10, 1172-1178, 2012.
doi:10.1049/iet-map.2011.0523

15. Zhang, S. and L. Zhu, "Compact and high-selectivity microstrip bandpass filters using triple-/quad-mode stub-loaded resonators," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 10, 522-524, Oct. 2011.
doi:10.1109/LMWC.2011.2166252

16. Kim, C.-H. and K. Chang, "Independently controllable dual-band bandpass filters using asymmetric stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3037-3047, Dec. 2011.
doi:10.1109/TMTT.2011.2168973

17. Song, K. and Q. Xue, "Novel broadband bandpass filters using Y-shaped dual-mode microstrip resonators," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 9, 548-550, Sep. 2009.
doi:10.1109/LMWC.2009.2027058

18. Song, K. and Q. Xue, "Inductance-loaded Y-shaped resonators and their applications to filters," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 4, 978-984, Apr. 2010.
doi:10.1109/TMTT.2010.2042509

19. Duong, T. H. and I. S. Kim, "Steeply sloped UWB bandpass filter based on stub-loaded resonator," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 8, 441-443, Aug. 2010.
doi:10.1109/LMWC.2010.2049480

20. Salleh, M. K. M., G. Prigent, O. Pigaglio, and R. Crampagne, "Quarter-wavelength side-coupled ring resonator for bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 156-162, Jan. 2008.
doi:10.1109/TMTT.2007.912167