Vol. 52
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-04-09
A Broadband Rectifying Circuit with High Efficiency for Microwave Power Transmission
By
Progress In Electromagnetics Research Letters, Vol. 52, 135-139, 2015
Abstract
A broadband rectifying circuit with high microwave-direct current (mw-dc) conversion efficiency is designed based on the voltage doubling circuit. The rectifying circuit consists of a broadband match network, a capacitance, a diode, a dc-pass filter formed by three fan-shaped stubs and a resistive load. The measured results show a maximum mw-dc conversion efficiency of 78.3% at 2.45 GHz centre frequency on a 900 Ω load. When the input power is 15 dBm, the bandwidth of efficiencies higher than 50% is about 57% (1.65 GHz-3.05 GHz). The simulated results agree with the measured ones. The rectifying circuit has the characteristics of simple structure and easy integration, which can be applied in the microwave power transmission systems.
Citation
Mei-Juan Nie, Xuexia Yang, and Jia-Jun Lu, "A Broadband Rectifying Circuit with High Efficiency for Microwave Power Transmission," Progress In Electromagnetics Research Letters, Vol. 52, 135-139, 2015.
doi:10.2528/PIERL15012902
References

1. Sun, H. C., Y. X. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband yagi antenna array for ambient RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 918-921, 2013.
doi:10.1109/LAWP.2013.2272873

2. Alirio, J. and B. C. Nuno, "A batteryless RFID remote control system," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2727-2736, 2013.
doi:10.1109/TMTT.2013.2262688

3. Kaibin, H. and K. N. Vincent, "Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment," IEEE Transactions on Wireless Communications, Vol. 13, No. 2, 902-912, 2014.
doi:10.1109/TWC.2013.122313.130727

4. Huang, W., B. Zhang, X. Chen, K.-M. Huang, and C.-J. Liu, "Study on an S-band rectenna array for wireless microwave power transmission," Progress In Electromagnetics Research, Vol. 135, 747-758, 2013.
doi:10.2528/PIER12120314

5. Ren, Y. J. and K. Chang, "Bow-tie retrodirective rectenna," Electronics Letters, Vol. 42, No. 4, 191-192, 2006.
doi:10.1049/el:20064008

6. Phongcharoenpanich, C., K. Boonying, and S. Kosulvit, "Dual-polarized flat rectenna for 2.45GHz," IEEE-APS Topcial Conference on Antennas and Propagation in Wireless Communications, 1433-1436, 2013.

7. Yang, X. X., C. Jiao, A. Z. Elsherbeni, F. Yang, and Y. Q. Wang, "A novel compact printed rectenna for data communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2532-2539, 2013.
doi:10.1109/TAP.2013.2244550

8. Hagerty, J. A. and F. B. Helmbrecht, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 1014-1024, 2004.
doi:10.1109/TMTT.2004.823585

9. Collado, A. and A. Georgiadis, "Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna," IEEE Transactions on Circuits and Systems, Vol. 60, No. 8, 2225-2234, 2013.
doi:10.1109/TCSI.2013.2239154

10. Shin, J., M. Seo, J. Choi, J. So, and C. Cheon, "A compact and wideband circularly polarized rectenna with high efficiency at X-band," Progress In Electromagnetics Research, Vol. 145, 163-173, 2014.
doi:10.2528/PIER14012803

11. Yo, T. C., C. M. Lee, C. M. Hsu, et al. "Compact circularly polarized rectenna with unbalanced circular slots," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 3, 882-886, 2008.

12. "HSMS-286x surface mount RF Schottky barrier diodes,", Data Sheet, Avago Technology, 2007.

13. "The advanced design system (ADS),", Agilent Corp., 2005.