Vol. 62
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-03-13
Modern Antenna Design Using Mode Analysis Techniques
By
Progress In Electromagnetics Research B, Vol. 62, 153-165, 2015
Abstract
In this paper, the modal theory of antennas is re-visited, believing that it brings invaluable information towards facilitating the design of multi-feed multi-band antennas. First, some subtle changes are proposed to enhance the applicability of thetheory. Next, using some efficient computational techniques, the proposed formulations are shown to predict, to a very high accuracy, the input impedance of any antenna under study. This greatly simplifies the antenna problem and focuses design efforts on finding the appropriate complex resonance frequency to cover a required band. Finding the appropriate feed location is then a matter of extracting the corresponding impedance map for this antenna through simple field manipulations.
Citation
George Shaker, Safieddin Safavi-Naeini, and Nagula Sangary, "Modern Antenna Design Using Mode Analysis Techniques," Progress In Electromagnetics Research B, Vol. 62, 153-165, 2015.
doi:10.2528/PIERB15012807
References

1. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, Wiley-Interscience, 2007.

2. Lo, Y. T., D. Solomon, and W. F. Richards, "Theory and experiment on microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 2, 137-145, Mar. 1979.

3. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.

4. Shen, Z. and R. Macphie, "Rigorous evaluation of the input impedance of a sleeve monopole by modal-expansion method," IEEE Transactions on Antennas and Propagation, Vol. 44, 1584-1591, Dec. 1996.

5. Deschamps, A., "Microstrip microwave antennas," US-AF Symposium on Antennas, 1953.

6. Derneryd, G., "A theoretical investigation of the rectangular microstrip antenna element," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 4, 532-535, Jul. 1978.

7. Carver, R., "A modal expansion theory for the microstrip antenna," IEEE Antennas and Propagation Symposium, 101-104, Jun. 1979.

8. Richards, W. F., Y. T. Lo, and D. D. Harrison, "An improved theory of microstrip antennas and applications," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 6, 853-858, Nov. 1979.

9. Carver, K. R., "Practical analytical techniques for the microstrip antenna," Workshop on Printed Circuit Antenna Technology, 1-20, New Mexico State University, Oct. 1979.

10. Hammerstad, E. O., "Equations for microstrip circuit design," European Microwave Conference, 268-272, Sep. 1975.

11. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, Jan. 1981.

12. Schaubert, H., F. G. Farar, A. Sindoris, and S. T. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 118-123, Jan. 1981.

13. Bhartia, P. and I. J. Bahl, "Frequency agile microstrip antennas," Microwave Journal, 67-60, Oct. 1982.

14. Richards, W. F. and Y. T. Lo, "Theoretical and experimental investigation of a microstrip radiator with multiple limped linear loads," Electromagnetics, Vol. 3, No. 3-4, 371-384, Jul.-Dec. 1983.

15. Richards, W. F., "Microstrip antennas," Antenna Handbook: Theory, Applications and Design, Chapter 10, Van Nostrand Reinhold Co., New York, 1988.

16. Schaubert, H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 6, 667-682, Jun. 1989.

17. Pozar, M., "Microstrip antennas," Proceedings of the IEEE, Vol. 80, No. 1, 79-81, Jan. 1992.

18. Pozar, D. M. and D. Schaubert, "Microstrip antennas: The analysis and design of microstrip antennas and arrays,", Institute of Electrical and Electronics Engineers, 1995.

19. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Vol. 1 and 2, Peter Peregrinus, London, UK, 1989.

20. Lee, K. F. and W. Chen, Advances in Microstrip and Printed Antennas, Wiley, 1997.

21. Wong, K. L., Design of Nonplanar Microstrip Antennas and Transmission Lines, Wiley, 1999.

22. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002.

23. Wong, K. L., Planar Antennas for Wireless Communications, Wiley-Interscience, 2003.

24. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw Hill, New York, 1961.

25. Collin, R. E., Field Theory of Guided Waves, McGraw Hill, New York, 1960.

26. Stuart, R., "Eigenmode analysis of small multielement spherical antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2841-2851, Sep. 2008.

27. Stuart, R., "Eigenmode analysis of a two element segmented capped monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2980-2988, Oct. 2009.

28. Ansoft HFSS v11.0, Ansoft, LLC, 2008, , [Online], available: www.ansoft.com/products/hf/hfss/.

29. COMSOL MULTIPHYSICS v3.4, COMSOL Group, 2008, , [Online], available: www.comsol.com.

30. Matlab Antenna Toolbox, Open Source, , [Online], available: http://ece.wpi.edu/mom/.

31. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.

32. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Micro. Opt. Tech. Lett., Vol. 7, 599-604, 1994.

33. Bahl, J. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.

34. James, J. R., P. S. Hall, and C. Wood, "Microstrip antenna,", P. Peregrinus on behalf of the Institution of Electrical Engineers, 1981.

35. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwood, 2001.

36. Hao, X., D. R. Jackson, and J. T. Williams, "Comparison of models for the probe inductance of a parallel-plate waveguide and a microstrip patch," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3229-3235, Oct. 2005.

37. Shaker, G., S. Safavi-Naeini, N. Sangary, and M. Bakr, "A generalized modal analysis method for antenna design," IEEE International Symposium on Antennas and Propagation Techniques, 2009.

38. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.

39. Yang, F. and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1094-1100, Jul. 2001.

40. Shaker, G. and S. Safavi-Naeini, "Highly miniaturized fractal antennas," IEEE Radio and Wireless Symposium, 2007.

41. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 4, 1298-1324, Apr. 2005.

42. Shaker, G., S. Safavi-Naeini, G. Rafi, and N. Sangary, "On the fundamental Q-bandwidth relations for antennas," IEEE Antennas and Propagation Symposium, Jul. 2008.

43. Shaker, G., M. H. Bakr, N. Sangary, and S. Safavi-Naeini, "Accelerated antenna design methodology exploiting parameterized cauchy models," Progress In Electromagnetic Research B, Vol. 18, 279-309, 2009.

44. Murata Manufacturing Co. Ltd., http://www.murata.com, .

45. Bernhard, J. T., Reconfigurable Antennas, Morgan & Claypool Publishers, 2007.

46. Peregrine Semiconductor, [Online], available: http://www.psemi.com/, .