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Modern Antenna Design Using Mode Analysis Techniques

George Shaker1, 2, *, Safieddin Safavi-Naeini1, and Nagula Sangary1, 3

Abstract—In this paper, the modal theory of antennas is re-visited, believing that it brings invaluable
information towards facilitating the design of multi-feed multi-band antennas. First, some subtle changes
are proposed to enhance the applicability of the theory. Next, using some efficient computational
techniques, the proposed formulations are shown to predict, to a very high accuracy, the input impedance
of any antenna under study. This greatly simplifies the antenna problem and focuses design efforts on
finding the appropriate complex resonance frequency to cover a required band. Finding the appropriate
feed location is then a matter of extracting the corresponding impedance map for this antenna through
simple field manipulations.

1. BACKGROUND

Modal analysis among the circuit and filter communities is widely spread. A close look at the design
steps of many of the available modern filters reveals the utilization of modal techniques as a key design
component [1]. Notably, modal analysis of antennas has long been known in the antenna community.
Lo and Richards contributed significantly to the advancement of this theory in the late 1970s and early
1980s [2]. However, their approach was limited in its accuracy due to the utilization of some theoretical
assumptions of the complex resonant frequencies of the antennas they studied. These assumptions
imposed significant limitations on the antennas’ structures that could be analyzed, along with limitations
on the achievable Q values. To date, modal analysis in antenna design has not evolved at the same rate
it did in circuit/filter applications.

There exists a plurality of work on antenna analysis using modal expansion techniques. The
work of Harrington and Mautz is one example [3], and the work of Shen and MacPhie is another [4].
Remarkably, the analysis and design of printed antennas is widely documented in numerous research
papers and assembled in several books (see for example [5–23]). In its simplest form, a planar printed
antenna is modeled as a transmission line model with its radiating edges treated as slots. A more
rigorous analysis came in 1977 by Professor Lo [2] who treated the planar printed antenna as a cavity.
His work was amended by multiple refinements to the modal approach for antenna design [14, 15].
However, the research following his approach essentially diminished since the early 1990s with rare
subsequent occurrences in publications. This is primarily due to the limited accuracy of the approach
when dealing with practical antenna designs. The limited accuracy was mainly attributed to the
approximate calculation of the complex resonant frequency. This means that if such a frequency were
calculated to a higher accuracy, then the technique would result in much better results. This will be
the main focus of this chapter.

Although the transmission-line model is easy to use, it suffers from numerous disadvantages [11].
For instance, it is only useful for patches of rectangular shape, the fringe factor must be empirically
determined, it ignores field variations along the radiating edge, and it is not adaptable to inclusion of
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the feed. These disadvantages are diminished in the modal expansion analysis technique, whereby the
patch is viewed as a thin cavity with magnetic walls. In this technique, the field between the patch and
the ground plane is expanded in terms of a series of cavity resonant modes or Eigen functions, along
with its eigenvalues or resonant frequencies associated with each mode. The effect of radiation and other
losses is represented in terms of either an artificially increased substrate loss tangent [11] or by the more
elegant method of an impedance boundary condition at the walls [2–8]. In fact, the later method results
in a much more accurate formulation for the input impedance and resonant frequency for rectangular,
circular, and other simple geometrical patches, at only a modest increase in mathematical complexity.
However, it remains quite limited when irregular geometries are considered.

Thus, given the prior art, there are two major approximations with the modal theory that need to be
studied: the use of the impedance boundary condition, and the effect of radiation on the orthogonality
condition and all of the associated formulations.

2. MODERN EIGEN MODE SOLVERS

It can be shown that one way to realize an RLC equivalent network for an antenna is to have accurate
knowledge of the value of the complex modal resonance frequency ωmn. Using approximate impedance
boundary conditions is limited in its application to antennas with simple configurations and high Q
values. Moreover, modern antenna designs typically feature structures with several slots, along with
relatively low Q values. This severely limits the utilization of the concept of impedance boundary
conditions for such a problem.

One possible alternate method, given the advancements in the computational powers and
techniques, is to utilize a generalized EM Eigen solver. Several numerical Eigen solvers found their
way recently into leading commercial EM software, targeting applications in acoustics, photonics, and
RF filters. A brief list of EM-based commercial Eigen solvers would include HFSS from Ansoft (using
finite elements) [28], and the EM Solver Module of COMSOL Multiphysics (using finite elements) [29].

The EM finite elements approach for the Eigen frequency search is a variational technique in which
a minimization process automatically seeks out the characteristic solution. This is usually done in a
numerical process that truncates the space around the modeled structure in a perfect metallization.
However, driven by needs for better radar cross section analysis, the technique was substantially
improved, allowing for the incorporation of perfectly absorbing materials for truncation of the solution
space and thus adequately simulating the space bounds of the antenna. This yields a different and more
general approach compared to the earlier method in [24] and [8–11], where the interior region of the
antenna is mathematically decoupled from the exterior region through the use of an equivalent aperture
admittance as the boundary condition. It can be readily seen that the earlier approach is limited by the
accuracy of the equivalent aperture admittance. However, using a numerical Eigen solver, this limitation
does not exist anymore, since the solver domain is only truncated at the absorbing boundaries. This
allows for the calculation of complex Eigen frequencies of any general antenna. To date, very little
published research utilizes these capabilities. In fact, just recently, Stuart [26, 27] adopted the concept
of Eigen mode analysis using COMSOL to study the Q of small 3D antennas.

It is noteworthy to mention at this point that Eigen solvers are also available in some Method of
Moments (MOM) codes. For example, the open source Matlab Antenna toolbox [30] features such a
capability. However, the MOM Eigen solvers suffer from severe complexities when finite dielectrics are
included in the analysis. This results in a significant decrease in both the computational speed and the
resulting accuracy, especially when compared to those achieved by the FEM Eigen solvers.

As an example to illustrate some of the features of EM Eigen solvers, let us consider a patch antenna
with dimensions L = 35 mm and W = 25 mm, on a foam substrate, and a height of H = 200 mil, placed
on an infinite ground plane. Such a patch can be easily studied using a 3D Eigen mode solver like those
available from COMSOL or Ansoft (which became part of ANSYS). Fig. 1 shows the magnitude of the
electric field for the first three resonant modes of the patch. The solution set for each mode contains
the complex resonant frequency in addition to the electric and magnetic field vectors. This information
is sufficient to construct the RLC model for a resonant antenna, as discussed in the next section. Fig. 2
illustrates how the complex resonant frequency calculation converges during different simulation steps.
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Figure 1. Normalized electric field magnitude maps of first three modes.

Figure 2. Convergence of complex resonant frequency of the first mode.

3. ADOPTED ANTENNA MODELING AND INPUT IMPEDANCE CALCULATIONS

Let us consider a randomly shaped antenna having an axis aligned with the z-axis and placed on top
of a PCB with relative permittivity εr. Let us also assume that the antenna will be probe-fed. So the
target here is evaluate the input impedance at some arbitrary feed locations without having to undergo
multiple full-wave driven simulations (to find the best feed location from an impedance point of view).
The setup for a numerical Eigen problem would take the form shown in Fig. 3, but without any feed-
specific model. The Eigen fields would then occupy all the space surrounding the antenna (reflecting
all possible fringing fields). To utilize the modal data in calculating the input impedance, one needs to
evaluate:

Zin (x0, y0, z0 = h) =
Vin (x0, y0, z0 = h)
Iin (x0, y0, z0 = h)

=
−

h∫
0

Ez (x0, y0, z) dz
∫
J (x0, y0, z0 = h) ds

(1)

The electric field between the top antenna metalization and the ground plane may then be expanded
using the Eigen field functions as [24, 25]:

Ez (x, y, z) = jωμ
∑

p

1
k2 − k2

p

〈J, ψp〉
〈ψp, ψp〉ψp (x, y, z) (2)

where
〈J, ψp〉 =

∫
Jψ∗

pdv (3)

and
〈ψp, ψp〉 =

∫
ψpψ

∗
pdv (4)

Note that the modal field for mode p is given by Ezp = ψp(x, y, z), and v denotes the volume surrounding
the antenna and enclosed by the PML cover. Also, note that in (2) and all of the subsequent
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formulations, the surface and volume integrals are written in a compact format for simplicity. In
terms of the complex resonance frequency, the electric field at the source location may be re-written as:

Ez (x0, y0, z0) = jω
∑

p

1
ε

1
ω2 − ω2

p

〈J, ψp〉
〈ψp, ψp〉ψp (x0, y0, z0) (5)

As discussed earlier, the complex resonant frequency and the normalized field distribution are direct
outcomes of any FEM Eigen mode solver. Thus, the field normalization process can be easily carried
out as a post-processing numerical integration step. Hence, one can write:

Zin (x0, y0, z0 = h) = −jωh2
∑

p

1
ω2 − ω2

p

ψ∗
p (x0, y0, z0 = h)
ε
∫
ψpψ∗

pdv
ψp (x0, y0, z0 = h) (6)

The input impedance can then be re-written in an expandable form of a parallel RLC circuit as:

Zin (x0, y0, z0) = −j 1
ωCdc

− jω
∑

p

1
Cp (x0, y0, z0)

1
ω2 − ω2

p

(7)

where Cdc denotes the dc capacitance of the patch (DC mode), and

1
Cp (x0, y0, z0)

= h2ψ
∗
p (x0, y0, z0)ψp (x0, y0, z0)

ε
∫
ψpψ∗

pdv
(8)

Rp (x0, y0, z0) =
Qrad

p0

ωp0Cp (x0, y0, z0)
(9)

Lp (x0, y0, z0) =
1

ω2
p0Cp (x0, y0, z0)

(10)

with
ωp0 =

√
(Re (ωp))

2 + (Im (ωp))
2 (11)

and

Qrad
p0 =

1
2

√
(Re (ωp))

2 + (Im (ωp))
2

Im (ωp)
(12)

The generalized equivalent circuit for a multimode radiator can then be developed, as in Fig. 4. It
should be noted that an additional inductance is added to account for the inductance associated with
probe feeding. Cdc is the dc capacitance, where its associated loss is typically ignored when using
low-loss substrate materials. The RPLPCP circuit represents the fundamental antenna mode, with
RpLpCp representing the higher order modes taken into consideration. The term L′ is associated with
an approximation for the effect of the higher order modes that are not considered in detailed analysis.

It is important to mention that all previously developed formulations assume orthogonal mode
expansions, a condition which is not strictly satisfied when treating the antenna as a lossy cavity (due
to radiation and/or material losses). To the authors’ knowledge, no prior work has rectified such an
issue. It is also important to note that the accuracy of the Eigen analysis is further mystified when trying
to assess the validity of modal expansion technique using numerical PML boundaries. Observing Fig. 3,
one would notice that the problem space is bounded by PEC walls defining a metal cavity. The PMLs
are placed inside the cavity to encompass the space around the antenna. From an Eigen point of view,
this can be classified as modal analysis of an inhomogeneous cavity. For the orthogonality condition to
remain valid, this metal cavity needs to remain lossless. Here the choice of PML boundaries makes a
significant impact on the orthogonality of the Eigen modes, since the most prevalent formulations include
that of [31] which involves lossy PML, and that in [32] which is a lossless form. The former is easier to
implement numerically, while the latter is preferable from a formulation point of view. Regardless of
the nature of the PML, as will be shown later, the Eigen-based method remained useful for presenting
first-order designs of many different types of antennas, despite the lack of strict orthogonality among
the Eigen modes.
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Figure 3. Setup for the Eigen problem. Outer
cavity bounded with PEC walls.

Figure 4. Equivalent circuit for multimode
radiator.

4. THE CONCEPT OF IMPEDANCE MAPS

A close look at (7) suggests the possibility of creating a map of the input impedance at each point of
an antenna surface when fed by a probe. The ability of creating such maps is of great importance.
Traditional techniques involve a large number of parametric trials and optimization cycles until a
desired feed resistance is found. With the proposed concept, it is shown that seeking a location with
specific input resistance is reduced to a single Eigen mode simulation and some simple field processing
procedures.

Before being able to construct the impedance response (following Fig. 4), one first needs to
account for the feeding mechanism. Proximity coupling and aperture feeding are among the possible
schemes [15, 18–20, 33–35]. Here, the probe-feeding mechanism is chosen as an example for discussion.
For most typical probe-fed antennas, the probe can be modeled with an inductance, Lprobe. There are
several papers on the modeling of such an inductance [36].

To illustrate the proposed concept of impedance maps, two examples may be used. First, an E-Slot
antenna [37–39] is analyzed through the modal solver. By analyzing its first two fundamental modes, it
is possible to create the associated resistance maps. These are then used to find proper feed locations to
have dual-feed dual-band antenna, as well as a single-feed dual-band antenna. Second, a very simple 3D
conformal antenna, suitable for operation in a portable device at the GSM low band, is presented. The
concept of impedance maps is then demonstrated by facilitating the determination of an appropriate
feeding location.

4.1. Dual-Band Single-Feed and Dual-Feed Dual-Band Antenna Designs

An E-Slot antenna [38, 39] is widely known in the antenna community. It is simply a patch antenna
with two slots forming the shape of the letter “E”. It is usually used to realize two close resonances
and thus meet a wider bandwidth requirement, which is not achievable with a simple patch of the

Figure 5. The E-Slot antenna. Figure 6. Screen capture of the modal solution
results.
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Figure 7. Electric field distribution of the first
fundamental mode.

Figure 8. Electric field distribution of the second
fundamental mode.

 

Figure 9. Surface current distribution of the first
fundamental mode.

Figure 10. Surface current distribution of the
second fundamental mode.

same dimensions. Also, it is sometimes used to create two resonances apart, to meet some dual band
requirement. The latter application will be studied here. Let us arbitrarily choose the following values
for the parameters shown in Fig. 5: L = 65, W = 105, W1 = 15.3, W2 = 6.3, Ls = 47, and H = 3mm
on a foam substrate. An Eigen mode simulation is applied seeking the first two fundamental modes of
such patch.

Figure 6 shows a screen capture of the Eigen solver report solved in HFSS, and processed in Matlab,
with Fig. 7–Fig. 10 illustrating the resulting modal electric field and surface current distributions of
both modes.

Now, using the resulting information from the Eigen solver and processing it using (7), one can plot
the resistance values at any location on the patch surface, without the need for excessive parametric
procedures. Fig. 11 and Fig. 12 show the resulting maps for each of the modes, respectively. For
comparison, Fig. 13 compares the normalized input resistance across the center line of the E-patch
at 2.05 GHz (when generated using an actual feeding probe through driven simulations) versus that
predicted from the map. A very good correlation is observed. As noted in Fig. 11 and Fig. 12, there
are a number of separate feed locations that can each excite one of the modes, while slightly perturbing
the other. By placing two physical feed probes at the locations highlighted in Fig. 11 and Fig. 12,
one realizes a dual-band dual-feed antenna with its response verified through a single driven numerical
simulation, as shown in Fig. 14.

Using the same maps, one can easily find a feed location to excite both modes of interest,
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Figure 11. The resulting resistance map for the
first mode with a feed location suitable for dual
feed operation.

Figure 12. The resulting resistance map for the
second mode with a feed location suitable for dual
feed operation.

Figure 13. Comparing the normalized input
resistance from driven and modal simulations.

Figure 14. Resulting response of the dual-band
dual-feed antenna.

Figure 15. The resulting resistance map for the
first mode with a feed location suitable for single
feed operation.

Figure 16. The resulting resistance map for
the second mode with a feed location suitable for
single feed operation.
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Figure 17. Comparing the input return loss from the circuit model and the actual simulation.

simultaneously. Fig. 15 and Fig. 16 highlight one possible location. Using the modal analysis
information, it is possible to predict the return loss plot of such single-feed dual band antenna. Fig. 17
compares the resulting return loss plot using the Eigen mode analysis with that from a single driven
simulation with an actual feed placed at the location shown in Fig. 15. It is noteworthy to observe that
the deviation seen in Fig. 17 may be attributed to two important factors. First, only the first two modes
were utilized in (7). Adding more modes would increase the accuracy of the model, at the expense of
more computational complexity. Second, placing the feed probe near the corner of the patch implies
some inaccuracy in the utilized probe formulation (as discussed in Section 5.6).

4.2. Design of a Smartphone Antenna

The previous example featured a planar antenna. To verify the usefulness and the generality of the
proposed modal analysis approach, this example discusses the design of a conformal 3D cell phone
antenna. Even more complex variants of this design [40] can be studied using the same methodology.
For simplicity, let’s focus on a design that meets the requirements for the 900 MHz cellphone band.
Simple estimations using the Q-BW relations [41, 42] indicate that we need a Q of around 11 to cover
GSM900 band with VSWR of 3.

For a smartphone board of 45 × 90 mm, one may use a simple strip wrapped around the edge of
the board, as shown in Fig. 18 (details showing the steps to achieve such shape are beyond the scope
of this paper. It mainly follows the routine presented in [43]). The wrapped strip has an overall height
of 4 mm and is connected to the board through a short strip connection. The exact dimensions are
determined from an Eigen mode simulation that searches for the required complex frequency to meet
the bandwidth requirements. After some parametric trials, it is possible to have a design with modal
data, as shown in Fig. 19. Here, the first fundamental radiating mode of the antenna is numbered as
Mode 2. Its quality factor is around 9.6, which ensures meeting the required impedance bandwidth. It
is worth mentioning that Mode 1 in Fig. 19 denotes a non-radiating numerical artifact mode associated
with the perfect matching layers that terminate the space around the cell board.

Once a satisfactory Q is realized at the desired resonance frequency, the field data associated with

Figure 18. Visualization of a simple smartphone
antenna.

Figure 19. Screen snapshot of the resulting
modal data.
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Figure 20. Impedance (resistance) map of the
smartphone antenna.

Figure 21. Input reflection coefficient of the
antenna using a driven simulation.

Figure 22. The resistance map at (x, y) =
(45,−14).

Figure 23. The resistance map at (x, y) =
(45,−2).

Figure 24. Input resistance plots generated using a driven simulation with a probe located at different
locations across the y-axis.

the simulated structure is processed and the impedance (resistance) maps are generated (see Fig. 20).
Studying these maps, one can rapidly find a suitable location for the feeding probe. Fig. 21 shows the
resulting return loss from a numerical driven simulation of the cell antenna. It can be seen that the
required bandwidth was successfully covered.

To further demonstrate the accuracy of the generated maps, Fig. 22 and Fig. 23 show the predicted
input resistance at two arbitrary locations. Next, an actual feed probe is used in a number of driven
simulations. The probe location is fixed across the x-axis, and is allowed to vary across the y-dimension.
The resulting input resistance is shown in Fig. 24. Comparing Fig. 22, Fig. 23, and Fig. 24, there is a
maximum of 5% deviation between the results from the maps and those from the driven simulations.
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This is an acceptable accuracy, considering that the resistance maps were generated for only the first
fundamental radiating mode. Including a few more additional modes should enhance the accuracy at
the expense of more computational efforts.

5. APPLICATION IN TUNABLE ANTENNA DESIGN

Let us consider a probe-fed patch antenna design of 60×40 mm, on a 3 mm foam layer over a large ground
plane. The dominant radiation mode of the antenna resonates at 2.16 GHz. Let us further assume that
the antenna shape has to be fixed, while meeting a VSWR = 2 : 1 or better from 1.9 GHz to 2.1 GHz.
A look at the antenna scattering parameters using a probe 5mm off-center of the patch’s long edge,
and using the aforementioned Q calculations, it becomes clear that no RLC matching network exists
to enable meeting the requisite bandwidth. One alternative is to use a tunable matching network. One
realization for this network is shown in Fig. 26, where L1 = 22 [nH], C1 = 1 [pF], and C2 varies from
1 [pF] to 4 [pF]. Variable capacitors are widely available in various technologies, such as MEMS, BST
or Silicon. Unfortunately, there is no such thing as ideal components, and all inductors and capacitors
will have an associated Q value. When dealing with portable devices, one is typically bounded by
surface mount devices (SMDs) to keep the circuit footprint as small as possible. The inductor Q of
the 0402 family is typically less than 15, with slightly better numbers for the capacitors [44]. The Q
numbers are even worse for smaller families as the 0201. Currently, higher Q values are possible, but
with a significant markup on price [44]. Thus, when considering the component losses in the matching
network, and assuming a Q of 20 for the inductors and Q of 25 for the capacitors, the overall system
efficiency (match+antenna) would range from 70% to 80% across 1.9 GHz to 2.1 GHz instead of the
near 100% efficiency for a metal-based naturally-matched resonant patch antenna on a foam substrate.

Another critical issue associated with matching networks is the ability to withstand high peak
RF voltages when the load is in a high VSWR scenario. For example, let us consider feeding the
aforementioned antenna when matched with the circuit in Fig. 26, using a 34 dBm signal (a typical
value in cellphone applications). Let us also assume using a silicon-based solution, as that from
Peregrine Semiconductor. The peak RF voltage rating of such a tunable capacitor is typically much less
than 30 V. Interestingly, a quick calculation of the RF voltages across C2 for different load conditions
reveals that the capacitor may in fact suffer from much higher voltages (Fig. 27, courtesy of Peregrine
Semiconductor [46]). This is quite a serious issue that limits the practical application of the tunable
capacitor concept in many applications.

Let us now consider an alternate solution by connecting the tunable capacitor directly to the
antenna metallization. This topology is widely adopted in reconfigurable antenna solutions [45]. Here,

Figure 25. Scattering parameters of the probe-
fed patch antenna.

Figure 26. Possible matching network.
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Figure 27. RF voltages across the tunable
capacitor in the matching network under study
(courtesy of Peregrine Semiconductor).

Figure 28. Probe-fed patch antenna loaded with
a tunable capacitor.

Figure 29. The variation in the input reflection coefficient of the antenna for different capacitor values.

the Eigen mode analysis discussed earlier can be applied to find the optimum location and value of the
tunable element, in order to cover the desired range of frequencies. A capacitor Q of 25 was used in all
numerical simulations. It was found that placing the capacitor 10 mm off-center across the long edge of
the patch antenna would suffice. It is important to note that placing the capacitor directly at the edge
would result in a wider tuning range at the expense of lower antenna efficiency. Fig. 28 shows a pictorial
of the probe-fed antenna when loaded with a tunable capacitor at 10 mm off-center (probe placed 15 mm
apart from capacitor). Fig. 29 demonstrates the tuning range of the antenna. A full-wave simulation
reveals that the antenna has an overall efficiency of 90% or higher for all tuning states. In addition,
the peak RF voltage remains below 17 V in all cases. This example shows the versatility of the Eigen
mode method in tackling tunable-based designs. It also demonstrates that loading the antenna with
the tunable element has some system advantages compared to relying on a tunable matching network.

6. DISCUSSION AND CONCLUSIONS

In this paper, the modal theory of antennas was re-visited. Through some basic analysis, a number of
limitations with the commonly used formulations were highlighted. Some subtle changes were proposed
to increase the range of validity and improve the accuracy of the relevant formulations. Through
these formulations, the designer will always have relevant information about the maximum attainable
bandwidth, the operational frequency, and the radiation pattern of any antenna at hand.

In addition, the concept of impedance maps was proposed and was demonstrated as an efficient
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design tool through a number of design examples. This is a special concept that allows the designer
to predict beforehand the impedance values at any location on a general antenna, without need
for parametric and optimization trials seeking an appropriate feed location. Notably, the presented
implementation steps are quite general and can be easily used towards the design of multi-band multi-
feed antennas.

Notably, there is a major challenge with the outlined design procedure. Specifically, there is still
no systematic approach to find an antenna structure with the required complex frequency needed to
meet the design specifications. To search for such a design, an efficient optimization strategy is needed.
One should note that this optimization cycle is expected to be different from the traditional ones, given
the presented advancements in the calculation of the antenna quality factor. An enhanced optimization
cycle would then translate the return loss specifications into seeking structures with specific resonant
frequencies and quality factors. This translation would provide the optimizer with some physics-
based knowledge of the structure investigated, which in turn should improve the convergence of the
optimization cycle.
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