1. Holliday, D., L. L. De Raad, Jr., and G. J. St-Cyr, "Sea-spike backscatter from a steepening wave," IEEE Trans. Antennas Propagat., Vol. 46, 108-113, 1998.
doi:10.1109/8.655457
2. West, J. C., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Trans. Geosci. Remote Sens., Vol. 40, 523-526, 2002.
doi:10.1109/36.992830
3. Zhao, Z. and J. C.West, "Low-grazing-angle microwave scattering from a three-dimensional spilling breaker crest: A numerical investigation," IEEE Trans. Geosci. Remote Sens., Vol. 43, 286-294, Feb. 2005.
doi:10.1109/TGRS.2004.840644
4. Li, Y. and J. C. West, "Low-grazing-angle scattering from 3-D breaking water wave crests," IEEE Trans. Geosci. Remote Sens., Vol. 44, 2093-2101, 2006.
doi:10.1109/TGRS.2006.872129
5. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and Doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401
6. Yang, W., Z. Zhao, C. Qi, and Z. Nie, "Electromagnetic modeling of breaking waves at low grazing angles with adaptive higher order hierarchical legendre basis functions," IEEE Trans. Geosci. Remote Sens., Vol. 49, 346-352, 2011.
doi:10.1109/TGRS.2010.2052817
7. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607
8. West, J. C. and Z. Q. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Trans. Geosci. Remote Sens., Vol. 40, 583-592, 2002.
doi:10.1109/TGRS.2002.1000318
9. Ye, H. and Y. Q. Jin, "Fast iterative approach to difference scattering from the target above a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 40, 108-115, 2006.
10. Kubicke, G., C. Bourlier, and J. Saillard, "Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method," Waves in Random and Complex Media, Vol. 20, 156-178, Jan. 2010.
doi:10.1080/17455030903476712
11. Ye, H. and Y.-Q. Jin, "A hybrid analytic-numerical algorithm of scattering from an object above a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 45, 1174-1179, 2007.
doi:10.1109/TGRS.2007.892609
12. Wang, P., Y. Yao, and M. P. Tulin, "An efficient numerical tank for nonlinear water waves, based on the multi-subdomain approach with BEM," Int. J. Numer. Methods Fluids, Vol. 20, 1315-1336, 1995.
doi:10.1002/fld.1650201203
13. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, Wiley, 2001.
doi:10.1002/0471224308
14. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acous. Soc. Am., Vol. 83, 78-92, 1988.
doi:10.1121/1.396188
15. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
16. Debye, P., Polar Molecules, Chemical Catalog, 1929.