Vol. 151
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-05-01
Full Wave Modeling of Brain Waves as Electromagnetic Waves (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 151, 95-107, 2015
Abstract
This paper describes a novel technique which has the potential to make a significant impact on the mapping of the human brain. This technique has been designed for 3D full-wave electromagnetic simulation of waves at very low frequencies and has been applied to the problem of modeling of brain waves which can be modeled as electromagnetic waves lying in the frequency range of 0.1-100 Hz. The use of this technique to model the brain waves inside the head enables one to solve the problem on a regular PC within 24 hrs, and requires just 1 GB of memory, as opposed to a few years of run time and nearly 200 Terabyte (200,000 GB) needed by the conventional FDTD (Finite Difference Time Domain) methods. The proposed technique is based on scaling the material parameters inside the head and solving the problem at a higher frequency (few tens of MHz) and then obtaining the actual fields at the frequency of interest (0.1-100 Hz) by using the fields computed at the higher frequency. The technique has been validated analytically by using the Mie Series solution for a homogeneous sphere, as well as numerically for a sphere, a finite lossy dielectric slab and the human head using the conventional Finite Difference Time Domain (FDTD) Method. The presented technique is universal and can be used to obtain full-wave solution to low-frequency problems in electromagnetics by using any numerical technique.
Citation
Sidharath Jain, Raj Mittra, and Joe Wiart, "Full Wave Modeling of Brain Waves as Electromagnetic Waves (Invited Paper)," Progress In Electromagnetics Research, Vol. 151, 95-107, 2015.
doi:10.2528/PIER15011404
References

1. Suppes, P. and B. Han, "Brain-wave representation of words by superposition of a few sine waves," Proc. Natl. Acad. Sci., Vol. 97, No. 15, 8738-8748, Jul. 18, 2000.
doi:10.1073/pnas.140228397

2. Pasley, B. N., S. V. David, N. Mesgarani, A. Flinker, S. A. Shamma, et al. "Reconstructing speech from human auditory cortex," PLoS Biol.., Vol. 10, No. 1, e1001251, 2012, doi: 10.1371/journal.pbio.1001251.
doi:10.1371/journal.pbio.1001251

3. Hoole, P. R. P., K. Pirapaharan, S. A. Basar, R. Ismail, D. L. D. A. Liyanage, S. S. H. M. U. Senanayake, and S. R. H. Hoole, "Autism, EEG and brain electromagnetics research," 2012 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 541-543, Dec. 17–19, 2012, doi: 10.1109/IECBES.2012.6498036.

4. Yasuhara, A., "Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD)," Brain and Development, Vol. 32, No. 10, 791-798, Nov. 2010, ISSN 0387-7604, 10.1016/j.braindev.2010.08.010.
doi:10.1016/j.braindev.2010.08.010

5. F¨unfgeld, E. W., M. Baggen, P. Nedwidek, B. Richstein, and G. Mistlberger, "Double-blind study with phosphatidylserine (PS) in parkinsonian patients with senile dementia of Alzheimer’s type (SDAT)," Prog. Clin. Biol. Res., Vol. 317, 1235-1246, 1989.

6. Ponomareva, N. V., N. D. Selesneva, and G. A. Jarikov, "EEG alterations in subjects at high familial risk for Alzheimer’s disease," Neuropsychobiology, Vol. 48, 152-159, 2003, doi: 10.1159/000073633.
doi:10.1159/000073633

7. NeuroSky Inc. "Brain wave signal (EEG) of NeuroSky, Inc.,", Dec. 2009.

8. Yasui, Y., "A brainwave signal measurement and data processing technique for daily life applications," J. Physiol. Anthropol., Vol. 28, No. 3, 145-150, 2009.
doi:10.2114/jpa2.28.145

9. Fleur, K. L., K. Cassady, A. Doud, K. Shades, E. Rogin, and B. He, "Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface," J. Neural. Eng., Vol. 10, 046003, Jun. 4, 2013, doi: 10.1088/1741-2560/10/4/046003.

10. Doud, A. J., J. P. Lucas, M. T. Pisansky, and B. He, "Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface," PLoS ONE, Vol. 6, e26322, 2011.
doi:10.1371/journal.pone.0026322

11. Galan, F., M. Nuttin, E. Lew, P. W. Ferrez, G. Vanacker, J. Philips, and R. del Millan, "A brainactuated wheelchair: Asynchronous and non-invasive brain-computer interfaces for continuous control of robots," Clin. Neurophysiol., 1192159-1192169, 2008.

12. Popescu, F., S. Fazli, Y. Badower, B. Blankertz, and K.-R. Muller, "Single trial classification of motor imagination using 6 dry EEG electrodes," PLoS ONE, Vol. 2, No. 7, e637, 2007, doi: 10.1371/journal.pone.0000637.
doi:10.1371/journal.pone.0000637

13. Grozea, C., C. D. Voinescu, and S. Fazli, "Bristle-sensors — Low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications," J. Neural. Eng., Vol. 8, 025008, 2011, doi: 10.1088/1741-2560/8/2/025008.
doi:10.1088/1741-2560/8/2/025008

14. Zhu, J. and D. Jiao, "A unified finite-element solution from zero frequency to microwave frequencies for full-wave modeling of large scale three-dimensional on-chip interconnect structures," IEEE Trans. Adv. Packag., Vol. 31, No. 4, 873-881, Nov. 2008.

15. Gope, D., A. Ruehli, and V. Jandhyala, "Solving low-frequency EM-CKT problems using the PEEC method," IEEE Trans. Adv. Packag., Vol. 30, No. 2, 313-320, May 2007.
doi:10.1109/TADVP.2007.896000

16. Peratta, C. and A. Peratta, "Dielectric properties of biological tissues," Topics in Engineering, Modelling the Human Body Exposure to ELF Electric Fields, Vol. 47, 21-40, 2010.

17. Asami, K., "Dielectric properties of biological tissues in which cells are connected by communicating junctions," Journal of Physics D — Applied Physics, Vol. 40, No. 12, 3718-3727, Jun. 21, 2007, doi: 10.1088/0022-3727/40/12/027.
doi:10.1088/0022-3727/40/12/027

18. Kuang, W. and S. O. Nelson, "Low-frequency dielectric properties of biological tissues: A review with some new insights," IEEE Transactions of the ASAE, Vol. 41, No. 1, 173-184, Jan.–Feb. 1998.
doi:10.13031/2013.17142

19. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues. 1. Literature survey," Physics in Medicine and Biology, Vol. 41, No. 11, 2231-2249, Nov. 1996, doi: 10.1088/0031-9155/41/11/001.
doi:10.1088/0031-9155/41/11/001

20. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 2. Measurements in the frequency range 10Hz to 20GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, Nov. 1996, doi: 10.1088/0031-9155/41/11/002.
doi:10.1088/0031-9155/41/11/002

21. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 3. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, Nov. 1996, doi: 10.1088/0031-9155/41/11/003.
doi:10.1088/0031-9155/41/11/003

22. Bossetti, C. A., M. J. Birdno, and W. M. Grill, "Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation," Journal of Neural Engineering, Vol. 5, No. 1, 44-53, Mar. 2008, doi: 10.1088/1741-2560/5/1/005.
doi:10.1088/1741-2560/5/1/005

23. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 82-101, Wiley-VCH, Mar. 1998.
doi:10.1002/9783527618156