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Abstract—This paper describes a novel technique which has the potential to make a significant impact
on the mapping of the human brain. This technique has been designed for 3D full-wave electromagnetic
simulation of waves at very low frequencies and has been applied to the problem of modeling of brain
waves which can be modeled as electromagnetic waves lying in the frequency range of 0.1–100 Hz. The
use of this technique to model the brain waves inside the head enables one to solve the problem on a
regular PC within 24 hrs, and requires just 1 GB of memory, as opposed to a few years of run time and
nearly 200 Terabyte (200,000 GB) needed by the conventional FDTD (Finite Difference Time Domain)
methods. The proposed technique is based on scaling the material parameters inside the head and
solving the problem at a higher frequency (few tens of MHz) and then obtaining the actual fields at the
frequency of interest (0.1–100 Hz) by using the fields computed at the higher frequency. The technique
has been validated analytically by using the Mie Series solution for a homogeneous sphere, as well
as numerically for a sphere, a finite lossy dielectric slab and the human head using the conventional
Finite Difference Time Domain (FDTD) Method. The presented technique is universal and can be
used to obtain full-wave solution to low-frequency problems in electromagnetics by using any numerical
technique.

1. INTRODUCTION

Neural activity inside the brain results in low frequency waves known as brain waves. These brain
waves can be further classified into delta (0.1 to 3 Hz), theta (4 to 7 Hz), alpha (8 to 12 Hz), beta
(12 to 30 Hz) and gamma (30 to 100 Hz) waves based on the rate of neural activity inside the brain.
For example the neural activity while sleeping can be modeled as alpha waves, while dreaming can be
modeled as theta waves, when one is in a state of relaxation or conscious thinking or agitated state can
be modeled as beta waves and when one is moving the limbs can be modeled as gamma waves. For the
development of thought controlled devices one needs to focus on the mid-range beta (16–20 Hz) waves
because when one is consciously thinking the neural activity can be modeled as electromagnetic waves
in this frequency range. Researchers have succeeded in converting the brain wave patterns recorded by
using electroencephalogram (EEG) into alphabets and words [1, 2]. Also, monitoring the brain waves
can help diagnose disorders within the human body, and this possibility is currently being investigated
by a number of researchers [3–6].

The Fast Fourier Transform (FFT) has been used to analyze the EEGs, in order to investigate the
features of EEG signals in the frequency domain. As mentioned earlier, the frequency distribution of
the EEG signal is highly correlated with the mental and emotional states of a person, as well as with
the placement of the EEG electrodes. Commonly used EEG montages fall into two categories; namely,
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monopolar and bipolar [7]. The monopolar montages measure the signal at the point of contact and
compare it with a common reference electrode which is placed in a location which is unaffected by brain
activities. On the other hand,the bipolar montage only records the difference in the signals between two
electrodes that are in contact with the scalp. Yet another area of brain research, carried out to harness
the information from brain waves in the process of developing thought-controlled devices [8–11] is to
develop dry electrodes that can provide the desired accuracy in brain wave measurements, since the
traditional electrodes used for EEG measurements require a gel-based material to ensure good contact
between the scalp and the electrodes [12, 13].

Although the EEG signals can be measured externally, it is not possible to determine the centers
of neural activity inside the brain corresponding to different thoughts, and yet that is the key to
converting one’s thoughts into actions as well as to diagnose and monitor the health problems. Full-
wave electromagnetic modeling of brain waves has been proposed as a very promising alternative to
overcome these challenges in mapping the human brain. However, it is well known that both the time
domain and frequency domain based numerical computational electromagnetic methods for solving
the Maxwell’s equations suffer from the so-called “low-frequency-breakdown” problem [14, 15]. It is not
uncommon, therefore, to resort to quasi-static solvers once the frequency of interest falls below a certain
frequency (say a few MHz), and to ignore the contribution of the displacement currents, and, hence,
the coupling between the electric and magnetic fields. Specifically, the quasi-static solution assumes

Table 1. Material parameters of the 26 different materials present in the human head model in Figure 1
with their percentage contribution to the head model.

Material

ID

Material

Name
Percentage

Permittivity

(Real)

Conductivity

(S/m)

Permittivity

(Im)

0 Air 71.6461 1.0 0 0.0

1 Internal air 0.6462 1.0 0 0.0

2 Body fluid 0.0546 99.0 1.5 −539781928.1

3 Eye-cornea 0.0013 1642100.0 0.4214 −151642736.3

4 Fat 5.6444 1472800.0 0.019555 −7036957.1

5 Lymph 0.0654 1637700.0 0.52142 −187635395.3

6 Mucous membrane 0.7369 51274.0 0.00042719 −153726.3

7 Nerve spine 0.0460 1608800.0 0.0274 −9860016.6

8 Muscle 5.6944 17719000.0 0.23329 −83950484.0

9 White matter 2.3688 5289800.0 0.053274 −19170895.0

10 Glands 0.3758 1637700.0 0.52142 −187635395.3

11 Blood vessel 0.0757 8095800.0 0.26115 −93976033.7

12 Cerebellum 0.6819 12108000.0 0.095258 −34279031.3

13 Cortical bone 1.7422 8867.8 0.020055 −7216884.4

14 Cartilage 0.1248 1637700.0 0.17143 −61689877.3

15 Ligament/Tendon 1.7546 17098000.0 0.26977 −97077980.5

16 Dry skin 2.5039 1136.0 0.0002 −71970.9

17 Tooth 0.0698 8867.8 0.020055 −7216884.4

18 Grey matter 2.7776 12107000.0 0.075258 −27081938.9

19 Eye lens 0.0048 1737200.0 0.32143 −115668070.1

20 Eye sclera 0.0176 292950.0 0.5027 −180898916.8

21 Blood 0.0489 5259.9 0.7 −251898233.1

22 Cerebrospinal fluid 0.8197 109.0 2 −719709237.5

23 Eye vitreous humor 0.0626 99.0 1.5 −539781928.1

24 Bonemarrow 0.6532 166680.0 0.0016487 −593292.3

25 Cancellous bone 1.3828 788910.0 0.080703 −29041347.3
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that the real part of εr can be neglected since σ/(ωε) � 1 and transforms the wave equation into a
diffusion equation. Unfortunately, however, this approximation is not valid for most of the materials
inside the head, since the σ/(ωε) ratio of these materials is typically close to 1 [16–21], as may be
seen from Table 1. In fact, Grill et al. [22] have shown that the quasi-static potential differs from the
full-wave potential by nearly 30% to 50%, supporting the argument that a full-wave solution should be
derived even at low frequencies for the head-modeling problem, since the quasi-static approach is not
sufficiently accurate for the problem at hand.

In this paper we propose a technique for deriving the full-wave solutions of the head problem at
very low frequencies by first scaling the material parameters inside the head, then solving the problem at
a higher frequency (few tens of MHz), and finally obtaining the actual fields at the frequency of interest
(0.1–100 Hz) using the fields previously obtained at the higher frequency. The technique has been
validated by comparing against the Mie-series analytical solution, as well as against the numerically-
derived solution for a homogeneous lossy sphere. The solutions have also been validated for the case
of a finite lossy dielectric slab, and for the human head, simulated by using the Finite Difference Time
Domain (FDTD) Method. The technique proposed herein is universal, in that it can be used to obtain
full-wave solution to low-frequency problems in electromagnetics by using any of the available CEM
techniques and can be applied to solve most low-frequency problems as long as scaling the relative
permittivity does not result in permittivity values much smaller than unity.

2. FULL-WAVE MODELING OF BRAIN WAVES

A model comprising of 26 different materials has been used to model the human head. This model has
been discretized into voxels; i.e., cubes with side 1 mm. Figure 1 shows the material distribution inside
the human head model along with two different cross-sections.

For the purpose of mapping the brain, we are interested in estimating the fields at different points
inside the head in the frequency range of 0.1–100 Hz when a source is placed inside the head. However,
placing a source inside the head is difficult to do, since the medium inside the head is lossy and highly
dispersive, and εr for the different mediums range from nearly 102 to 108, as may be seen from the
material parameters for the human head at 50 Hz as listed in Table 1, where the imaginary part of
the complex permittivity has been computed by using the relation Im(εr) = −σ/(ωε0). To circumvent
this problem, we measure the field at different points inside the head with a short dipole source placed
outside the head as the exciter. Alternatively, we could place the source inside the head, and sense
the fields on the surface of the head, as for instance by using the Electro Encephalogram (EEG). We
could invoke reciprocity to establish the equivalence between these two measurements, and then either
measure or simulate the one that is most convenient for our purpose.

Figure 2 shows the cross-section of an adult human head, and also depicts a short dipole placed at
three different locations on the head with different polarizations. The length of the dipole is 45 mm.

(a) (b)

Figure 1. The material distribution inside the head model with 26 different materials for two
perpendicular cross-sections of the head. (a) X-Z plane, (b) Y -Z plane.
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Figure 2. Human head model with three different orientations and locations of exciting short dipoles.

The material distribution inside the head is very complex (see Figure 1); hence, a very fine
mesh (∼ 1mm × 1mm × 1 mm) is needed to accurately model the head. As pointed out earlier, 3D
electromagnetic solvers based on both the Method of Moments (MoM) and the Finite Element Method
(FEM) suffer from the low-frequency breakdown problem, and they can only go down to a few hundred
MHz in frequency, below which the result they yield becomes very inaccurate relatively quickly. Also,
the number of unknowns required to solve the problem is estimated to be nearly 100 million, which
requires exorbitantly high computational resources, both in terms of CPU memory and time. As has
been pointed out earlier, we cannot use the quasi-static approximation to solve the problem at hand
even though we are interested in the solution at very low frequencies, since the real and imaginary parts
of the complex εri are comparable to each other and, hence, the contribution of the displacement current
cannot be neglected [22]. In view of this, we propose an alternative approach to derive the full-wave
solution at such low frequencies, as explained below.

The Finite Difference Time Domain (FDTD) method appears to be best suited to solve the problem
at hand. However, in the FDTD method a small mesh size implies a small time-step. In addition, if one
is working at frequencies in the range of 0.1 Hz to 100 Hz, and is using a low-frequency Gaussian pulse for
the excitation signal the small time-step would aggravate the problem even further, and one would need
to wait for several hundred billion time-steps for the solution to converge. Also, at low frequencies, the
Absorbing Boundary Conditions (ABCs) are not very effective, since they are not designed to absorb
the evanescent part of the fields and hence, they have to be moved far away and the problem size
would increase as a result. Thus, the conventional FDTD would be impractical to use for the head
problem at frequencies of interest to us. Therefore, to overcome both of these problems, namely, long
time domain pulses which lead to exorbitantly large simulation times and reflections from the ABC, we
have developed a technique based on the scaling of the material parameters and solving the problem
at a higher frequency — as shown in the schematic in Figure 3 — to derive the field values at the low
frequencies we desire. The technique involves scaling the εri of all the media inside the geometry to be
analyzed according to the equation:

εrisc = εri
f

fsc
(1)

where εrisc is the scaled εr of the medium with εr = εri, fsc the frequency at which the problem is
actually solved, and f the frequency at which the solution is desired.

The effect of the scaling the εr of all the media according to Eq. (1) is that the ratio between the εr

of two adjacent media remains constant, as a result of which the reflection and transmission coefficient
at the interface between two semi-infinite mediums, which depends only on the ratio of the characteristic
impedances of the two mediums remain unaltered. Also, if the medium thickness is much smaller than
the wavelength, the effect of thickness on the reflection and transmission coefficient becomes negligible.
Thus, the equivalent model of the head obtained by scaling the parameters of materials inside the head
retains the values of the reflection and transmission coefficient between the material interfaces nearly
same, because the size of the head is much smaller than the wavelength at the frequencies of interest;
hence, the field distribution inside the head remains unchanged from the unscaled case. Also, since the
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Figure 3. Schematic showing the steps involved in obtaining the full-wave solution at brain wave
frequencies.

medium outside the head is free space, we do not scale the relative permittivity of free space as it would
become much smaller than 1. To check the validity of this procedure we have shown, for the case of
either a uniform sphere or a slab of lossy dielectric material, that by scaling the material parameters of
the sphere/slab only, the electric field at a point inside the sphere or slab at the scaled frequency is also
scaled by the same factor. It should be pointed out that the behavior of the magnetic field is dependent
on the source, however, and the magnetic field inside the head remains nearly constant with scaling if
the source is a plane wave. However, in common with the electric field, the value of the magnetic field
also gets scaled by the same scaling factor if the source is a dipole. Also, we observe that since the
skin depths in the low frequency range of interest here are very large compared to the dimension of the
head. Hence, at low frequencies the head acts as a lossy cavity in which the waves bounce back and
forth many times before they get attenuated completely.

The EEG can measure the brain waves, but these measurements do not lead to a unique solution to
the inverse problem of locating the center of neural activity inside the brain. It is conjectured, however,
that the development of techniques for efficient full-wave modeling of brain waves will not only open up
avenues for addressing the problem of locating the center of neural activity, but would also enable us
to correlate the different locations inside the brain with different thoughts and actions.

3. NUMERICAL RESULTS

3.1. Validation Using a Slab

To validate the proposed approach, we have considered the test case of a uniform lossy dielectric slab
which is 300 mm long along both the transverse directions (x and y) and whose thickness is D = 250 mm,
as shown in Figure 4. This value of the thickness was chosen because it is close to the size of head.
For the material parameters, we choose εr = 107, μr = 1 and σ = 0.01 S/m at 1 Hz. Two different
excitations were investigated. The first of these was an x-polarized dipole placed 10 mm above the slab
as shown in Figure 4(a), while the second was an x-polarized plane wave incident from the top of the
slab as shown in Figure 4(b). The dipole has a cross-section with side 5 mm and length equal to 45 mm
including a gap of 5 mm between the two equal length arms. All references to the dipole excitation in
this paper refer to a dipole with the above dimensions. For both of these cases, we observe the fields at
a point located at the center of the slab.

Let us first consider the case of the dipole excitation. To solve this problem at f = 1 Hz, we need
to run the conventional FDTD simulation of the original problem for several hundred billion time steps
before it yields a convergent solution for the field. However, we can derive the same results in less than
10,000 time steps if we scale the εr of the slab by using the relation in Eq. (2) and work with a scaled
frequency fsc = 50 MHz. Table 2 shows that the amplitudes and phases of Ex and Hy at f remains
virtually unchanged when we scale the frequency from 100 kHz to 50 MHz, modify the εr as mentioned
above and scale the electric field and magnetic field values by the same factor f/fsc, which was used
to scale the εr to obtain the values of the fields at f . Furthermore, the number of time-steps required
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(a) (b)

Figure 4. Infinite slab excited using a x-polarized. (a) Short dipole, (b) plane wave.

Table 2. The value of the x-component of the electric field and y-component of magnetic field at the
center of the slab at 1 Hz due to an x-polarized short dipole as shown in Figure 4(a).

Ex Hy
Frequency
(fs) (MHz)

Amp
(nV/m)

Phase
(rad)

Amp
(pA/m)

Phase
(rad)

Time
Steps

0.1 48.8 −1.6 37.7 2.0 400000
0.5 49.6 −1.6 32.4 1.6 60000
1 45.4 −1.6 29.8 1.6 16000
5 45.2 −1.7 29.6 1.5 11000
50 35.6 −2.2 27.9 1.3 8000

Table 3. The value of the x-component of the electric field and y-component of magnetic field at the
center of the slab at 1Hz due to an x-polarized plane wave incident on the slab as shown in Figure 4(b).

Ex Hy
Frequency
(fs) (MHz)

Amp
(nV/m)

Phase
(rad)

Amp
(nA/m)

Phase
(rad)

Time
Steps

0.5 20.94 1.5 0.002654 3.1 16000
5 21.52 1.4 0.002655 3.1 6000

for convergence decreased from 400000 to 8000 as the solution frequency goes from 100 kHz to 50 MHz;
i.e., a 50 times reduction in simulation time. For all of the cases investigated, the time signature of the
field at the point where the field needs to be measured was plotted as a function of number of time
steps. Furthermore, the time signature was processed, by using the Discrete Fourier Transform (DFT)
at the frequency fsc, as a function of the number of time steps (window indices), to demonstrate the
convergence of the result at the frequency of interest and obtain the converged amplitude and phase of
the fields at the measurement point.

For the case of a plane wave excitation (see Figure 4(b)), however, the value of the electric field at
fsc are scaled by the corresponding scaling factor but the value of the magnetic field at fsc is same as
that at f as listed in Table 3. This behavior of the electric field and the magnetic field for the dipole
and plane wave excitations is found to hold true for any geometry as we will soon see. We point out
that as long as D/λ � 1, the proposed scaling approach gives accurate solutions for the fields. We can
accelerate the solution by several orders of magnitude by following the proposed scaling approach. It is
also worthwhile to mention that if the scaled εr is < 1, we can still use the proposed method, simply
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by employing the Drude model,and expressing the complex εr as:

εr = ε∞ − f2
p

f2 − jfγp
(2)

For a given frequency, the values of fp and γp can be calculated to obtain the required value of εrsc at
the frequency f of interest.

3.2. Validation Using a Sphere

Next, to validate our result for a problem which is analytically tractable, we consider a sphere whose
radius is 120 mm (almost the size of the head), and which is filled with muscle tissue with material
parameters εr = 17719000, μr = 1, σr = 0.23329 S/m at 50 Hz as shown in Figure 5(a). The analytical
value of the electric field at the center of the sphere for the case of plane wave incidence as shown in
Figure 5(a) was computed by using the Mie Series [23] after scaling the εr of the sphere with frequency,
as described earlier for the case of the slab, at a number of evenly spaced discrete frequencies, ranging
from 50 Hz to 200 MHz. The value of the electric field at the scaled frequency was then scaled by the
scale factor to obtain the actual value of the electric field at the frequency of interest, viz., f = 50 Hz. As
shown in Figures 6(a) and 6(b) the amplitude and phase of the fields at 50 Hz remains nearly constant,

(a) (b)

Figure 5. A sphere excited by x-polarized. (a) Plane wave, (b) short dipole.

(a) (b)

Figure 6. (a) Amplitude and (b) phase of Ex at the center of the sphere shown in Figure 5(a) for an
x-polarized plane wave as a function of the solution frequency. (a) Amplitude of Ex, (b) phase of Ex.
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Table 4. The value of the x-component of the electric field and y-component of magnetic field at
the center of a sphere at 50 Hz due to an x-polarized plane wave incident on a sphere as shown in
Figure 5(a).

Ex Hy
Frequency
(fs) (MHz)

Amp
(nV/m)

Phase
(rad)

Amp
(A/m)

Phase
(rad)

Time
Steps

5 38 1.4 0.002666 3.1 22000
50 40 0.9 0.002745 2.6 2000

Table 5. The value of the x-component of the electric field and y-component of magnetic field at the
center of a sphere at 50 Hz due to an x-polarized short dipole as shown in Figure 4(a).

Ex Hy
Frequency
(fs) (MHz)

Amp
(nV/m)

Phase
(rad)

Amp
(nA/m)

Phase
(rad)

Time
Steps

5 185 −1.81 1.8 1.49 30000
50 198 −1.96 2 1.32 4000

irrespective of the frequency fsc at which we solve the problem as long as the frequency is less than
60 MHz and also converges to the static field solution for a dielectric sphere [23]. These results have
been further validated by using a numerical simulation using the FDTD, and the field values are given
in Table 4. Also, we observe that for the case of plane-wave excitation of a sphere also, the values of
the electric field at the scaled frequency needs to be scaled by the scale factor of εr to obtain the correct
electric field at 50 Hz, but the value of magnetic field remains unchanged as we scale the εr, in common
with the case of the slab. Also, the amplitudes and phases of the electric fields obtained from simulation
are very close to the analytical Mie series solution in Figures 6(a) and 6(b).

This technique was also numerically validated for the case when an x-polarized short dipole source
was used to excite the sphere as shown in Figure 5(b). The same approach of scaling the material
parameters by the scale factor, followed by scaling the electric and magnetic fields by the same scale
factor was applied to this case. Table 5 shows that the amplitude and phase of the electric and magnetic
fields at the center of the sphere at 50 Hz remain unchanged as we scale the material parameters to two
different scaled frequencies, i.e., 5 MHz and 500 kHz.

3.3. Application of the Proposed Solution to the Human Head Problem

The proposed scaling concept can be applied to the problem of modeling of brain waves inside the
human head. To validate this technique for the case of the head problem the material parameters inside
the human head at 50 Hz, given in Table 1, were scaled to 5 MHz and 50 MHz using Eq. (1). For some
cases, such as the x-oriented dipole, it is possible to go down to even lower frequencies, namely, 100 kHz
and 500 kHz to further test the scaling approach. Note that when the material parameters are scaled
with frequency, the real parts of εr become much smaller than 1(< 0.01), for some of the materials as
seen from Table 1, though the imaginary parts of εr for these materials are much larger than real parts.
Therefore, in order to mitigate the convergence problems, which arise when we try to model such low
values of εr while using a dispersive model, we choose the real parts of εr for these materials to be
unity and leave the conductivity unchanged. This is a valid approximation since the real parts of εr

for these materials are much smaller than the equivalent imaginary part which is associated with the
conductivity.

We have determined that the values of the fields at the same point located inside the head for
three different orientations and locations of the short dipole on the surface of the head as shown in
Figures 2(a), 2(b) and 2(c), by using two frequency-scaled models of the head, at 5MHz and 50 MHz,
respectively, are nearly same. The results are presented in Table 6. Table 7 shows that for the x-
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Table 6. The value of the corresponding electric field component due to three different locations and
polarizations of a dipole as shown in Figure 2 on the surface of the head at a point inside the human
head at 50 Hz.

Frequency
(fs) (MHz)

Amp. of Ex at
Position 1 (nV/m)

Amp. of Ey at
Position 2 (nV/m)

Amp. of Ez at
Position 3 (nV/m)

5 170 900 550
50 170 780 480

Table 7. The value of the electric field at two different observation points inside the head at 50 Hz
obtained by solving the fields due to a x-polarized dipole placed on top of the head (see Figure 2(a)),
using four different equivalent head models derived by scaling the material parameters to four different
frequencies, i.e., 100 kHz, 500 kHz, 5MHz and 50 MHz.

Frequency
(fs) (MHz)

Point 1 Point 2 Time Steps
Ex at 50 Hz (nV/m) Ex at 50 Hz (nV/m) (for convergence)

0.1 175.9 65.3 4300000
0.5 170.8 67.8 2000000
5 167.2 49.0 400000
50 163.9 49.2 100000

Table 8. The value of the x-component of the electric field and y-component of magnetic field at a point
inside the human head at 50 Hz due to an x-polarized short dipole as shown in Figure 2 (Position 1).

Ex Hy
Frequency
(fs) (MHz)

Amp
(nV/m)

Phase
(rad)

Amp
(pA/m)

Phase
(rad)

Time
Steps

5 167.2 −1.9 60.97 1.48 400000
50 163.9 −1.9 65.64 1.55 100000

polarized dipole placed on top of the head (see Figure 2(a)), the value of the electric field at two
different observation points inside the head remains nearly constant for four different scaled frequencies,
i.e., 100 kHz, 500 kHz, 5MHz and 50 MHz, but the number of time steps required for convergence, and
hence the solution time, is decreased by 40 times as we increase the scaled frequency from 100 kHz to
50 MHz. The slight difference in the results at 500 kHz and 100 kHz may be because of the fact that
the ABCs are only partially effective at such low frequencies, since this difference is not observed in
the analytical solution for a sphere obtained by using the Mie series, which is shown in Figures 6(a)
and 6(b). We observe that scaling the material parameters of the head with frequency improves the
rate of convergence of the solution, which is retrieved at the frequency of interest by using the same
scale factor as that used to scale εr. Table 8 reports the amplitudes and phases of Ex and Hy at 50 Hz
for a x-polarized dipole placed on the surface of the head at position 1, as shown in Figure 2(a). It
proves that even for the complex case of the human head not only the amplitude of electric field but its
phase, and also the amplitude and phase of the magnetic field, remain invariant as we scale the material
parameters of the head to a higher frequency in order to render the problem solvable.

3.4. Numerical Validation of Reciprocity

Next, we numerically validate the satisfaction of the reciprocity principle for this problem, which forms
the basis of our simulation strategy. According to this principle, if a source dipole is placed inside the
head and a receive dipole is placed on the surface of the head, the voltage induced in the receive dipole
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(a) (b)

Figure 7. Reciprocity principle.

(a) (b)

Figure 8. Amplitude of Ex (in dB) with the material parameters of the head scaled to 5 MHz from
50 Hz at 5 MHz due to (a) source dipole inside the head, (b) on the surface of the head. (a) Amplitude
of Ex (in dB) due to a source dipole inside the head at 5MHz, (b) amplitude of Ex (in dB) due to a
source dipole on the surface of the head at 5 MHz.

would remain the same even when the position of the transmit and receive dipoles are interchanged.
Figure 7 shows two x-polarized short dipoles, one inside the head and the other on the surface of the
head. Figure 8 shows the field distribution in a plane perpendicular to x-axis and displaced by 20 mm
in the x-direction from the center of an x-polarized dipole. Figure 8 confirms that as the dielectric
constant of the material inside the head is very high, it acts as a cavity which does not allow most of
the fields to escape when the source is placed inside the head, and does not allow the fields to enter the
head when the source is placed outside the head. Figures 9(a) and 9(b) show the amplitude and the
phase of the voltage received by the dipole inside at 5 MHz when the dipole outside is excited by using
a Gaussian pulse. Figures 10(a) and 10(b) show the amplitude and the phase of voltage at 5 MHz when
the source and receive dipoles are interchanged. As we can see from the two figures, the amplitude and
phase of the induced voltage at 50 Hz is almost the same for the two cases, which verifies the numerical
application of reciprocity principle.

All the numerical simulations were carried out by using a commercial FDTD code. The model of
the head used in the code was discretized by using voxels each with a side 1 mm to accurately model the
complex material distribution inside the head. Although the FDTD method was used in this paper, the
proposed technique can also be used in conjunction with other numerical techniques such as the MoM
and the FEM to solve low-frequency problems.



Progress In Electromagnetics Research, Vol. 151, 2015 105

(a) (b)

Figure 9. (a) Amplitude and (b) phase of voltage at the receive dipole located on the surface of the
head due to a source dipole located inside the head as shown in Figure 7(a). (a) Amplitude of voltage
as a function of number of time steps, (b) phase of voltage as a function of number of time steps.

(a) (b)

Figure 10. (a) Amplitude and (b) phase of voltage at the receive dipole located inside the head located
due to a source dipole on the surface of the head as shown in Figure 7(b). (a) Amplitude of voltage as
a function of number of time steps, (b) phase of voltage as a function of number of time steps.

4. CONCLUSION

If we scale the εr with frequency and solve the problem at a higher frequency, the amplitude of electric
field also gets scaled by a factor equal to the ratio of the scaled frequency and the problem frequency,
while the phase remains nearly invariant. This hypothesis has been shown to be true for the case of
a sphere by using the analytical Mie Series formulation and simulations. Also, the same technique
has been validated for the case of full-wave modeling of brain waves inside the human head, with
an estimated error of less than 10%. By solving the problem at a higher frequency after scaling the
material parameters, the convergence rate of the solution can be increased significantly and the problem
of increased reflections due to the ABCs at low frequencies can be overcome. This, in turn, facilitates
the numerical modeling of the brain waves, which is a formidably challenging problem, owing to the
low-frequency breakdown problem, which arises regardless of the numerical technique used.
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