Vol. 52
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-03-04
Dual Frequency Selective Transparent Front Doors for Microwave Oven with Different Opening Areas
By
Progress In Electromagnetics Research Letters, Vol. 52, 11-16, 2015
Abstract
Microwave oven generates a harmful electromagnetic wave at 2.45 GHz of 1000 Watts. The generated microwave is confined within the cavity of the oven for efficient heating and secured operation. To prevent microwave leakage through the front glass door, a special construction of Faraday Cage is involved. In this paper, Faraday Cage is replaced with Transparent Frequency Selective Surface Front Door, which provides better visibility and avoids microwave energy to escape from the oven. Two works are proposed in this paper. The first one is band pass response which has been achieved for 10 GHz by printing array of Greek cross aperture (FSS) on the front glass door, and the second work is band stop response which has been achieved for 2.4 GHz frequency by printing the array of circular ring patch (FSS) on the front glass door. Design of two different FSS arrays and the simulation results were discussed.
Citation
Jaganathan Thirumal Murugan, T R Suresh Kumar, Peedikakkandy Salil, and Chakrapani Venkatesh, "Dual Frequency Selective Transparent Front Doors for Microwave Oven with Different Opening Areas," Progress In Electromagnetics Research Letters, Vol. 52, 11-16, 2015.
doi:10.2528/PIERL14121801
References

1. Munk, B. A., Frequency Selective Surfaces — Theory and Design, 227, John Wiley, 2000.
doi:10.1002/0471723770

2. Chiu, C.-N., C.-H. Kuo, and M.-S. Lin, "Bandpass shielding enclosure design using multipole-slot arrays for modern portable digital devices," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 4, Nov. 2008.

3. Taylor, P. S., "An active annular ring frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3265-3271, Sep. 2011.
doi:10.1109/TAP.2011.2161555

4. Raspopoulos, M., "Frequency selective buildings through frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 2998-3005, Aug. 2011.
doi:10.1109/TAP.2011.2158779

5. Mias, C., C. Tsakonas, and C. Oswald, "An investigation into the feasibility of designing frequency selective windows employing periodic structures, (Ref. AY3922),", Tech. Rep., Final Report for the Radio-communications Agency, Nottingham Trent University, 2001.

6. Yao, X., "Equivalent circuit method for analyzing frequency selective surface with ring patch in oblique angles of incidence," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 820-823, 2011.

7. Karlsson, A., "Frequency selective structures with stochastic deviations,", Electromagnetic Theory Lund Institute of Technology, 2003.

8. Fallahi, A., "Analysis and optimization of frequency selective surfaces with inhomogeneous, periodic substrates," Optomechatronic Micro/Nano Devices and Components III, edited by Lixin Dong, Yoshitada Katagiri, Eiji Higurashi, Hiroshi Toshiyoshi, Yves-Alain Peter, Proceedings of SPIE, Vol. 6717, 67170N, 2007.

9. Widenberg, B., "Design of energy saving windows with high transmission at 900 MHz and 1800 MHz,", Electromagnetic Theory Lund Institute of Technology, 2002.

10. Widenberg, B., A. Karlsson, and G. Kristensson, "Dissipation in thick frequency selective structures,", 2000.