Vol. 150
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-02-16
Omnidirectional Radiation in the Presence of Homogenized Metasurfaces
By
Progress In Electromagnetics Research, Vol. 150, 145-161, 2015
Abstract
Analytical and numerical approaches are presented for modeling the interaction of azimuthally symmetric fields with omnidirectional metasurfaces, based on the use of locally homogenized equivalent sheet impedances. Radially uniform metasurfaces on layered dielectric media are described in terms of a spectral impedance dyadic, thus allowing for the derivation of the field excited by omnidirectional sources through a simple transmission-line model. In a first approximation, the effect of circular edges in laterally truncated structures is taken into account through an efficient physicaloptics method. Then, truncated and radially non-uniform homogenized layered structures are treated numerically with the method of moments, by suitably extending a recently developed spectral-domain formulation. Numerical results are presented for planar radiating structures based on omnidirectional metasurfaces, comparing the radiation patterns obtained through the proposed homogenized models with those calculated by means of full-wave simulations. The discussion emphasizes the validity of the proposed approaches and their usefulness in the analysis of two-dimensional leaky-wave antennas based on printed omnidirectional metasurfaces.
Citation
David Di Ruscio, Paolo Burghignoli, Paolo Baccarelli, and Alessandro Galli, "Omnidirectional Radiation in the Presence of Homogenized Metasurfaces," Progress In Electromagnetics Research, Vol. 150, 145-161, 2015.
doi:10.2528/PIER14121504
References

1. Baccarelli, P., P. Burghignoli, G. Lovat, and S. Paulotto, "A novel printed leaky-wave ‘bull-eye’ antenna with suppressed surface-wave excitation," Digest 2004 IEEE AP-S Symp. Ant. Prop., Vol. 1, 1078-1081, 2004.
doi:10.1109/APS.2004.1329861

2. Llombart, N., A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symmetric EBG structures for reducing surface waves in printed antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3210-3218, Oct. 2005.
doi:10.1109/TAP.2005.856365

3. Sutinjo, A., M. Okoniewski, and R. H. Johnston, "A holographic antenna approach for surface wave control in microstrip antenna applications," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 675-682, Mar. 2010.
doi:10.1109/TAP.2009.2039316

4. Podilchak, S. K., Y. M. M. Antar, A. P. Freundorfer, P. Baccarelli, P. Burghignoli, S. Paulotto, and G. Lovat, "Planar antenna for continuous beam scanning and broadside radiation by selective surface wave suppression," Electronics Letters, Vol. 46, No. 9, 613-614, Apr. 2010.
doi:10.1049/el.2010.0074

5. Houaneb, Z., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of a new annular multi-slits antenna using wave concept iterative process in cylindrical coordinates," Ann. Telecommun., Vol. 66, 383-394, 2011.
doi:10.1007/s12243-010-0225-8

6. Podilchak, S. K., P. Baccarelli, P. Burghignoli, A. P. Freundorfer, and Y. M. M. Antar, "Optimization of a planar bull-eye leaky-wave antenna fed by a printed surface-wave source," IEEE Antennas Wireless Propag. Lett., Vol. 12, 665-669, 2013.
doi:10.1109/LAWP.2013.2262572

7. Ettorre, M. and A. Grbic, "Generation of propagating Bessel beams using leaky modes," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3605-3613, Aug. 2012.
doi:10.1109/TAP.2012.2201088

8. Podilchak, S. K., P. Baccarelli, P. Burghignoli, A. P. Freundorfer, and Y. M. M. Antar, "Analysis and design of annular microstrip-based planar periodic leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2978-2991, Jun. 2014.
doi:10.1109/TAP.2014.2314735

9. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, Aug. 2002.
doi:10.1126/science.1071895

10. Jackson, D. R., A. A. Oliner, Y. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: Leaky-wave model and open stopband effect," Radio Sci., Vol. 40, 1-12, 2005.
doi:10.1029/2004RS003226

11. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Materials, Vol. 9, 193-204, Mar. 2010.
doi:10.1038/nmat2630

12. Fu, Y. and X. Zhou, "Plasmonic lenses: A review," Plasmonics, Vol. 5, No. 3, 287-310, Jun. 2010.
doi:10.1007/s11468-010-9144-9

13. Bao, Q. and K. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices," ACS Nano, Vol. 6, No. 5, 3677-3694, 2012.
doi:10.1021/nn300989g

14. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
doi:10.1039/C4NR03143A

15. Sun, Z., T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano, Vol. 4, No. 2, 803-810, 2010.
doi:10.1021/nn901703e

16. Bonaccorso, F., Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics, Vol. 4, No. 9, 611-622, 2010.
doi:10.1038/nphoton.2010.186

17. Berry, C. W., N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," Nat. Commun., Vol. 4, 1622, 2013.
doi:10.1038/ncomms2638

18. Politano, A., "Low-energy collective electronic mode at a noble metal interface," Plasmonics, Vol. 8, No. 2, 357-360, 2013.
doi:10.1007/s11468-012-9397-6

19. Baccarelli, P., P. Burghignoli, D. Comite, D. Di Ruscio, A. Galli, P. Lampariello, and D. R. Jackson, "Annular reconfigurable metasurface for omnidirectional dual-pol leaky-wave antennas," 7th Europ. Conf. Antennas Prop. (EuCAP), Gothenburg, Sweden, Apr. 8-11, 2013.

20. Guo, Y. J., A. Paez, R. A. Sadeghzadeh, and S. K. Barton, "A circular patch antenna for radio LANs," IEEE Trans. Antennas Propag., Vol. 45, No. 1, 177-178, Jan. 1997.
doi:10.1109/8.554256

21. McEwan, N. J., R. A. Abd-Alhameed, E. M. Ibrahim, P. S. Excell, and J. G. Gardiner, "A new design of horizontally polarized and dual-polarized uniplanar conical beam antennas for HIPERLAN," IEEE Trans. Antennas Propag., Vol. 51, No. 2, 229-237, Feb. 2003.
doi:10.1109/TAP.2003.809058

22. Bregains, J. C., G. Franceschetti, A. G. Roederer, and F. Ares, "New toroidal beam antennas for WLAN communications," IEEE Trans. Antennas Propag., Vol. 55, 389-398, Feb. 2007.
doi:10.1109/TAP.2006.889796

23. Zhou, D., R. A. Abd-Alhameed, C. H. See, N. J. McEwan, and P. S. Excell, "New circularly-polarized conical-beam microstrip patch antenna array for short-range communication systems," Microw. Opt. Technol. Lett., Vol. 51, 78-81, Jan. 2009.
doi:10.1002/mop.23956

24. Batchelor, J. C. and R. J. Langley, "Microstrip ring antennas operating at higher order modes for mobile communications," IEE Proc. Microw. Antennas Propag., Vol. 142, No. 2, 151-155, Apr. 1995.
doi:10.1049/ip-map:19951826

25. Ares, F., G. Franceschetti, J. Mosig, S. Vaccaro, J. Vassallo, and E. Noreno, "Satellite communication with moving vehicles on Earth: Two prototype circular array antennas," Microw. Opt. Technol. Lett., Vol. 39, No. 1, 14-16, Oct. 2003.
doi:10.1002/mop.11112

26. Son, S. H., S. I. Jeon, C. J. Kim, and W. B. Hwang, "GA-based design of multi-ring arrays with omnidirectional conical beam pattern," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1527-1534, May 2010.
doi:10.1109/TAP.2010.2044326

27. Jackson, D. R. and A. A. Oliner, "Leaky-wave antennas," Modern Antenna Handbook, C. A. Balanis (Ed.), Ch. 7, Wiley, New York, 2008.

28. Jackson, D. R. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 33, No. 9, 976-987, Sep. 1985.
doi:10.1109/TAP.1985.1143709

29. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

30. Zhao, T., D. R. Jackson, J. T. Williams, H.-Y. D. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas — Part I: Metal patch design; Part II: Slot design," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3505-3524, Nov. 2005.
doi:10.1109/TAP.2005.858579

31. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702

32. Sievenpiper, D., "Forward and backward leaky-wave radiation with large effective aperture from an electronically tunable textured surface," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 236-247, Jun. 2005.
doi:10.1109/TAP.2004.840516

33. Patel, A. M. and A. Grbic, "A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2087-2096, Jun. 2011.
doi:10.1109/TAP.2011.2143668

34. Minatti, G., F. Caminita, M. Casaletti, and S. Maci, "Spiral leaky-wave antennas based on modulated surface impedance," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4436-4444, Dec. 2011.
doi:10.1109/TAP.2011.2165691

35. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Sec. 4.4.2, Artech House, Norwood, MA, 2003.

36. Luukkonen, O., C. R. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1624-1632, Jun. 2008.
doi:10.1109/TAP.2008.923327

37. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Trans. Antennas Propag. Mag., Vol. 54, No. 2, 10-35, Apr. 2012.
doi:10.1109/MAP.2012.6230714

38. Salem, M. A., K. Achouri, and C. Caloz, "Metasurface synthesis for time-harmonic waves: Exact spectral and spatial methods," Progress In Electromagnetics Research, Vol. 149, 205-216, 2014.
doi:10.2528/PIER14100505

39. Di Ruscio, D., P. Burghignoli, P. Baccarelli, D. Comite, and A. Galli, "Spectral method of moments for planar structures with azimuthal symmetry," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2317-2322, Apr. 2014.
doi:10.1109/TAP.2014.2302831

40. Gomez-Tornero, J. L., D. Blanco, E. Rajo-Iglesias, and N. Llombart, "Holographic surface leaky-wave lenses with circularly-polarized focused near-fields — Part I: Concept, design and analysis theory," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3475-3485, Jul. 2013.
doi:10.1109/TAP.2013.2257644

41. FEKO Suite 6.0, EM Software and Systems, , Technopark, Stellenbosh, 7600, South Africa, 2010; http://www.feko.co.za.

42. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

43. Felsen, L. and N. Marcuvitz, Radiation and Scattering of Waves, Ch. 2, Prentice-Hall, Englewood Cliffs, NJ, 1973.

44. Ostner, H., E. Schmidhammer, J. Detlefsen, and D. R. Jackson, "Radiation from dielectric leaky-wave antennas with circular and rectangular apertures," Electromagn., Vol. 17, No. 5, 505-535, 1997.
doi:10.1080/02726349708908557

45. Fong, B. H., J. S. Colburn, J. J. Ottusch, J. L. Vischer, and D. F. Sievenpiper, "Scalar and tensor holographic artificial impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3212-3221, Oct. 2010.
doi:10.1109/TAP.2010.2055812

46. Paulotto, S., P. Baccarelli, P. Burghignoli, G. Lovat, G. Hanson, and A. B. Yakovlev, "Homogenized Green’s functions for an aperiodic line source over planar densely periodic artificial impedance surfaces," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 7, 1807-1817, Jul. 2010.
doi:10.1109/TMTT.2010.2049917

47. Dudley, D. G., Mathematical Foundations for Electromagnetic Theory, Wiley-IEEE Press, New York, 1994.
doi:10.1109/9780470545232