Vol. 41
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-02-26
Effect of Temperature on Nanocomposite of Metal Nanoparticles in Photonic Crystals
By
Progress In Electromagnetics Research M, Vol. 41, 105-114, 2015
Abstract
We theoretically investigate the photonic band gaps in one-dimensional photonic crystals based on nanocomposite of silver nanoparticles. The dielectric permittivity is calculated in accordance with temperature dependence of plasma frequency of silver nanoparticle. The effect of temperature on these structures by incorporating the volume expansion coefficient of nanoparticle is analysed. The behaviors of photonic band gaps with variation of nanoparticle concentration, radii of nanoparticle, thickness of the layers and temperature are observed. The evolution of these results leads to designing the desired photonic crystals.
Citation
Nambi Ramachary Ramanujam, Kuladaisamy Wilson, and Vasan Revathy, "Effect of Temperature on Nanocomposite of Metal Nanoparticles in Photonic Crystals," Progress In Electromagnetics Research M, Vol. 41, 105-114, 2015.
doi:10.2528/PIERM14121001
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 3059-3062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Zhang, Y., J. Wang, Y. Huang, et al. "Fabrication of functional colloidal photonic crystals based on well-designed latex particles," J. Mater. Chem., Vol. 21, 14113, 2011.
doi:10.1039/c1jm10977d

4. Busch, K. and S. John, "Liquid-crystal photonic-band-gap materials: The electromagnetic vacuum," Phys. Rev. Lett., Vol. 83, 967, 1999.
doi:10.1103/PhysRevLett.83.967

5. Porras-Montenegro, N. and C. A. Duque, "Temperature and hydrostatic pressure effects on the photonic band structure of a 2D honeycomb lattice," Physica E, Vol. 42, 1865-1869, 2010.
doi:10.1016/j.physe.2010.02.016

6. Gajc, M., H. B. Surma, et al. "Nanoparticle direct doping: Novel method for manufacturing three-dimensional plasmonic nanocomposites," Advanced Functional Materials, Vol. 23, 3443-3451, 2013.
doi:10.1002/adfm.201203116

7. Perez, D. P., Silver Nanoparticles, In-Tech Publications, 2010.

8. Oraevski, A. N. and I. E. Protsenko, "High refractive index and other properties of Heterogenic media," JETP Lett., Vol. 72, 445-449, 2000.
doi:10.1134/1.1339896

9. Oraevski, A. N. and I. E. Protsenko, "Optical properties of heterogenous media," Quantum Electron, Vol. 31, 252-256, 2001.
doi:10.1070/QE2001v031n03ABEH001927

10. Challener, W. A., C. Peng, A. V. Itagi, et al. "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon., Vol. 3, 303, 2000.
doi:10.1038/nphoton.2009.71

11. Cai, W., J. S. White, and N. L. Brongersma, "Compact, high-speed and power-efficient electrooptic plasmonic modulators," Nano. Lett., Vol. 9, 4403, 2009.
doi:10.1021/nl902701b

12. Dyachenko, P. N. and Y. V. Miklyaev, "One-dimensional photonic crystal based on nanocomposite of metal nanoparticles and dielectric," Optical Memory and Neural Networks, Vol. 16, 198-203, 2007.
doi:10.3103/S1060992X07040029

13. Johnson, P. B. and R. N. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
doi:10.1103/PhysRevB.6.4370

14. Tanner, D. B., "Optical effects in solids,", Department of Physics, University of Florida, USA, 2013.

15. Yeshchenko, O. A., I. S. Bondarchuk, et al. "Temperature dependence of the surface plasmon in silver nanoparticles," Functional Materials, Vol. 20, 357-365, 2013.

16. Quinten, M., Optical Properties of Nanoparticle, 2011.
doi:10.1002/9783527633135

17. Kittel, C., Solid State Physics, 8th Ed., 2011.

18. Born, M. and E. Wolf, Principles of Optics, 6th Ed., Peragamon, 1980.

19. Suthar, B., V. Kumar, A. Kumar, K. S. Singh, and A. Bhargava, "Thermal expansion of photonic band gap for one dimensional photonic crystal," Progress In Electromagnetic Research, Vol. 32, 81-90, 2012.
doi:10.2528/PIERL12041906

20. www.engineeringtoolbox.com.

21. Labbani, A. and A. Benghalia, "Modeling by FDTD of some optical properties of photonic crystals based on a nanocomposite of silver in TiO2," PIERS Proceedings, 495-498, Marrakesh, Morocco, Mar. 20-23, 2011.