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Effect of Temperature on Nanocomposite of Metal Nanoparticles
in Photonic Crystals

Nambi R. Ramanujam1, Kuladaisamy S. Joseph Wilson2, *, and Vasan Revathy2

Abstract—We theoretically investigate the photonic band gaps in one-dimensional photonic crystals
based on nanocomposite of silver nanoparticles. The dielectric permittivity is calculated in accordance
with temperature dependence of plasma frequency of silver nanoparticle. The effect of temperature
on these structures by incorporating the volume expansion coefficient of nanoparticle is analysed. The
behaviors of photonic band gaps with variation of filling factor, radii of nanoparticle and temperature
are observed. The evolution of these results leads to designing the desired photonic crystals.

1. INTRODUCTION

Photonic crystals (PCs) have attracted a lot of attention in the field of optics since 1987. The most
important feature of PCs is the photonic band gap (PBG), in which the existence of light is forbidden
within a certain range of optical wavelengths [1]. The reason for interest in PBG materials arises from
the possible applications in optical sensors, optical filters and various optical integrated devices [2, 3].
To achieve suitable band gaps, great efforts have been made to obtain tunability of the band gaps. To
obtain a tunable PCs, the dielectric constant of the constituent materials must depend on some external
parameters, such as electric field [4], temperature and hydrostatic pressure [5], which can modify the
response functions of the PC materials.

The novel applications such as photonics, plasmonics and photovoltaics have potential in metallo-
dielectric materials with plasmonics at optical and infrared wavelengths. The light sources and plasmonic
metamaterials are under investigation. The use of plasmons in solar cells, cancer treatment, sensing
and Plasmon based lasers has already evolved [6]. In metallic nanoparticles, the possibility of tuning
their optical properties by manipulation of size, shape and the appropriate choice of host matrix has
been explored to a certain extent. The size controlled optical properties of silver nanoparticles have
potential applications such as diffraction elements, optical filters, nanoplasmonic devices, biosensors and
nonlinear media [7].

The linear and nonlinear optical properties of composite materials are determined by plasmon
resonance of metal nanoparticles and dielectric matrix. The linear and nonlinear optical properties of
composite materials are determined by plasmon resonance of metal nanoparticles in transparent matrix.
It is shown that optical resonance takes place in the transparent matrix with metal nanoparticles [8, 9].
The temperature dependence of the Surface Plasmon Resonance is important in most of the recent
applications of noble metal nanoparticles such as thermally assisted magnetic recording [10] and
computer chips [11]. In this paper, we analyze the PBG by embedding silver nanoparticles in the
silica matrix. The position and width of PBG depend on the temperature dependence of dielectric
permittivity of the host matrix, filling factor and for different radii of the nanoparticles. The latter is
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considered through the thermal volume expansion of the nanoparticle and electron-phonon scattering
in the nanoparticle.

2. THEORY

2.1. Dielectric Permittivity of Composite Material

The nanocomposite metal nanoparticles are randomly distributed in a transparent matrix. To determine
the permittivity of the nanocomposite εmix(ω), we use the Maxwell-Garnett formula [12]

εmix(ω) − εd

εmix(ω) + 2εd
= f

εm(ω) − εd

εm(ω) + 2εd
(1)

where εd is the dielectric permittivity of the transparent matrix, f the filling factor of the nanoparticle,
εm the dielectric permittivity of nanoparticle material, and ω the optical frequency.

When f = 1 (the whole volume of the matrix is occupied by metal nanoparticles), εmix = εm, and
when f = 0 (there are no metal nanoparticle in the volume of the matrix) εmix = εd. The dielectric
constant of the metal nanoparticles is determined in accordance with the drude model

εm(ω) = ε0 − ω2
P

ω(ω + iγ)
(2)

where ε0 is a constant (ε0 = 5 for silver [13]), ωp a plasma frequency (ωp = 13.64 × 1015 s−1 [14]), and
γ a damping constant of plasma oscillations. Substituting Equation (2) in Equation (1), we can deduce
the real and imaginary parts of the composite material.

εmix(ω) = ε′mix(ω) + ε′′mix(ω) (3)

The real and imaginary parts of εmix(ω) characterize the refractive and absorptive properties of the
material. Around the resonant frequency ω′, ε′mix(ω) behaves in an anomalous manner, and the material
exhibits strong absorption. The term ε′mix(ω) is negative in particular frequency range to be denoted
as ω10 and ω20. In this interval the nanocomposite has metallic optical properties.

Nanoparticles are distributed randomly and homogenously in transparent matrix. Let us consider
that silver nanoparticles are in spherical form. The plasma frequency

ωp =

√
Ne2

m∗ε0
(4)

where N is the concentration of free electron (N = 5.85 × 1028/m3), e the charge of an electron, and
m∗ an effective mass of an free electron.

The plasmon damping constant can be expressed as [15]

γ = γ∞ + A
vF

R
(5)

where R is the radius of the nanoparticle, γ∞ the size independent damping constant caused by scattering
of free electrons on electrons, phonons and lattice defects, A = 1 [15], and vF the Fermi velocity in bulk
metal (vF = 1.39 × 106 m/sec in bulk silver [14]). The dependence term 1/R in Equation (5) reflects
the ratio of surface scattering probability proportional to the surface area 4πR2 and the number of
electrons being proportional to the volume 4πR3

3 . This equation can be considered as a quantum size
effect and reflects the surface to volume ratio [16].

The size independent damping constant γ∞ depends on temperature due to the temperature
dependence of electron-phonon scattering rate [15]

γ∞(T ) = K ′T 5

∫ θ
T

0

z4dz

ez − 1
(6)
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where θ = 225 K [17] is the Debye temperature for silver, and K ′ is a constant [15]. Knowing the
damping constant for bulk silver at room temperature T ′ = 293 K, K ′ can be calculated as

K ′ =
γ∞(T ′)

T ′5
∫ θ

T ′
0

z4dz
ez−1

(7)

With the increase of temperature, the electron-phonon scattering rate increases will lead to increase of
damping constant γ∞. Due to this the permittivity of the transparent matrix is increased.

Due to thermal expansion, the radius of the nanoparticle increases as

R(T ) = R′(1 + βΔT )1/3 (8)

where R′ is the nanoparticle radius at room temperature.
Because the increase of temperature makes thermal expansion of the nanoparticle, the volume of

the nanoparticle increases [15]

V (T ) = V ′(1 + βΔT ) (9)

where ΔT = T−T ′ is the change of temperature from the room temperature and β the volume expansion
coefficient for silver.

The volume expansion coefficient depends on temperature according to [15] as

β(T ) =
192 ∈ Kb

r′α(16 ∈ −7TKb)2
(10)

where Kb is the Boltzmann constant, and ∝, ∈ r′ are the parameters of Morse potential used to describe
the potential of interatomic interaction in silver

u(r) =∈
[
e−2α(r − r0) − 2e−α(r−r0)

]
(11)

where ∈ is the magnitude of the minimum well depth; α controls the shape of the potential energy
curve; r is the inter atomic distance; r′ is the equilibrium inter atomic distance. The parameters of
Morse potential ∈= 0.3257 eV, α = 13.535 nm−1 and r′ = 0.313300 nm [15].

The free electron density in a metal particle is given by N = n/V , where n is the number of
electrons and V the particle volume. Let us consider the free electron density at room temperature be
N ′, then the total number of free electrons in the nanoparticle is

n = N ′V ′ = N(T )V (T ) (12)

The thermal expansion of the nanoparticle will lead to a decrease of concentrations of free electrons in
the nanoparticle. By combining Equations (4) and (9), we can obtain the expression for temperature
dependent plasmon frequency as

ωp(T ) =
ωpo√

1 + β(T )ΔT
(13)

where ωp0 = 8.9854 eV at room temperature.
Due to the temperature dependence of volume expansion coefficient, the plasma frequency is

decreased with the increase of temperature.

2.2. Transmission Properties of Photonic Crystals

The transmission properties of one-dimensional PC consisting of nanocomposite metal nanoparticles are
randomly distributed in a transparent matrix. Let us consider a one-dimensional PC, with N elementary
cells with lattice constant a. Each cell consists of one nanocomposite layer of width d1 with permittivity
εmix and one layer of air of width d2 with permittivity equal to 1. The lattice constant a = d1 + d2.
We consider only normal incidence of electromagnetic wave on photonic crystal. We consider the value
of lattice constant a = 2λp where λp is the plasma wavelength corresponding to the plasma frequency
ωp(λp ≡ 2πc

ωp
) at room temperature in Equation (13) (λp = 138 nm). The widths of the layers are

d1 = 0.5a and d2 = a − d1.
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To calculate the thickness of composite layer d1 due to thermal expansion, we assume that the
silica layer is of spherical shape of radius r (r = d1

2 ) embedded with silver nanoparticle of radius R. The
volume of the composite layer can be calculated as

Vcomp = V1(1 + β1ΔT )(1 − f) + V2(1 + β2ΔT )f (14)

where V1 = 4πr3

3 −4πR3

3 is the volume of the silica layer, V2 = 4πR3

3 the volume of the silver nanoparticle,
β1 the volume expansion coefficient of silica (1.65 × 10−6/K [14]), β2 the volume expansion coefficient
of silver nanoparticle and f is the filling factor. The volume expansion coefficient of silver is calculated
according to Equation (10) for each temperature. After expansion, the thickness of the composite layer
is reassigned as d1 = 3

√
Vcomp for the case of one dimension. The thickness of the composite layer is

reduced when the value of the filling factor is increased.
To compute the PBG in the transmission spectra due to the temperature dependence of plasma

frequency, we employ the transfer matrix method (TMM) [18]. Each layer of PC has its own transfer
matrix, and the overall transfer matrix of the system is the product of the individual transfer matrices.

For TE wave [19], each single layer has a transfer matrix according to TMM and is given by

Ml =
(

cos δl
−i
nl

sin δl

−inl sin δl cos δl

)
(15)

where l represents either H or L layer. The suffix H represents the nanocomposite layer, and L is the
air layer.

The phase δ1 is expressed as

δl = kldl =
2πdl

λ
nl (16)

For the entire structure of Air/(HL)N/Air, the total transfer matrix is given by

T = (MHML)N (17)

where the matrix elements can be obtained in terms of the elements of the single-period matrix. The
value of N is taken as 20.

The transmission coefficient for tunneling through such a structure is given by

t =
4

(T11 + T22)
2 + (T12 + T21)

2 (18)

where Tij are the elements of the matrix T .
Due to thermal expansion, the thickness of air layer can be written as

d(T ) = d(1 + αΔT ) (19)

where α is the thermal expansion coefficient, and ΔT indicates the variation of the temperature. The
thermal expansion coefficient is taken to be equal to 1/3 of volume expansion coefficient. The volume
expansion coefficient of air is 3.67 × 10−3/K [20].

The refractive index of nanocomposite layer is taken as n =
√

εmix in Equation (3) and air layer
as 1.

3. RESULTS AND DISCUSSION

The variation of damping constant and volume expansion coefficient with temperature are studied. The
damping constant is found to increase with temperature irrespective of the size of the nanoparticle as
shown in Figure 1(a). Similarly the volume expansion coefficient increases with temperature as shown
in Figure 1(b).
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Figure 1. (a) Variation of damping constant γ and (b) volume expansion coefficient of nanoparticle β
with temperature.
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Figure 2. Real part of composite dielectric permittivity with normalized frequency (a) at 393 K for
various filling factors, (b) at 293 K for various core sizes
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Figure 3. Dependence of ω10/ωp and ω20/ωp on filling factor at temperature 793 K.

3.1. Modulation of Dielectric Permittivity with Frequency

The filling factor strongly affects the real and imaginary parts of the dielectric permittivity of
nanocomposite materials. Figure 2(a) explains the variation of dielectric permittivity with the
normalized frequency for various filling factors at temperature 393 K. It is seen that the real part
of the dielectric permittivity depends on the filling factor. Resonance occurs at different frequencies.
The real part of the dielectric permittivity is found to be a constant and is a small value when the
frequency approaches the plasma frequencies. The dielectric constant increases with the filling factor
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in the low frequency region. The variation of dielectric permittivity also depends on the size of the
nanoparticles. There is no appreciable variation of dielectric constant with the size of the nanoparticles
except at the resonance region. At the resonance region, deviation occurs as shown in Figure 2(a). This
is due to the interaction of electromagnetic radiation with plasmonic oscillations of metal nanoparticles.
Plasmon resonance frequency also depends on the radius of the nanoparticles. As the filling factor
changes, resonance occurs at different places as shown in Figures 2(a) and 2(b). Figure 2(b) explains
the small variation in the resonance frequency, when the radius of the nanoparticles changes.

The values of ω10 and ω20 are calculated for various filling factors and radii 2 nm and 5nm at
temperature 793 K and plotted in Figure 3. When the filling factor increases, the gap between ω10 and
ω20 also increases. When the size of the nanoparticles increases, deviation occurs at the lower value of the
filling factor. With the increase of temperature, the gap between ω10 and ω20 also decreases. The zero
value of the real part of dielectric function occurs at the two frequencies determined by the parameters
of filling factor, radius of the nanoparticle and temperature. On an interval of frequencies [ω10, ω20] the
real part of dielectric function εmix(ω) accepts negative values of nanocomposite material similar to a
metal. The width of this interval ω20 − ω10 can be altered by changing the parameters.

The values of ω10/ωp for filling factor f = 0.2 are 0.3228 at radius 2 nm and 0.3075 at radius
5 nm, respectively. Similarly, the values of ω20/ωp are 0.3467 and 0.3641 for radius 2 nm and 5nm,
respectively. The dependence of frequency on filling factor for different radii at temperature 393 K is as
shown in Table 1. By increasing the filling factor the value ω10 is shifted from visible to infrared region,
and the value ω20 is situated in the visible region.

Table 1. Dependence of frequency on filling factor at temperature 393 K.

Radius Filling Factor ω10/ωp ω20/ωp

2 nm

0.2 0.3186 0.3513

0.3 0.2973 0.3728

0.5 0.2577 0.4005

0.7 0.2066 0.4210

0.9 0.1241 0.4371

5 nm

0.2 0.3066 0.3651

0.3 0.2910 0.3807

0.5 0.2545 0.4054

0.7 0.2048 0.4246

0.9 0.1233 0.4403

10 nm

0.2 0.3051 0.3667

0.3 0.2902 0.3819

0.5 0.2541 0.4062

0.7 0.2045 0.4252

0.9 0.1231 0.4405

Table 2. Dielectric permittivity with temperature for different radii when ω/ωp = 0.2.

Filling Factor Radius
Dielectric Permittivity

293 K 393 K 493 K 593 K 693 K 793 K

0.2

2 nm 4.4756 4.4725 4.4693 4.4660 4.4627 4.4592

5 nm 4.5392 4.5378 4.5363 4.5348 4.5332 4.5315

10 nm 4.5494 4.5486 4.5477 4.5468 4.5458 4.5447

0.7

2 nm 12.367 12.042 11.729 11.430 11.144 10.874

5 nm 45.456 42.307 39.422 36.818 34.472 32.322

10 nm 108.14 97.401 87.933 79.542 72.180 65.707
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Figure 4. Real part of the composite dielectric permittivity with temperature for different radii at
f = 0.7 for (a) ω/ωp = 0.2, (b) ω/ωp = 0.4.

Table 3. Position of PBG at different temperatures for parameters f = 0.5, a = 2λp, d1/a = 0.5,
Radius = 10 nm.

Temp. PBG1 (ω/ωp) eV Width (nm) PBG2 (ω/ωp) eV PBG3(ω/ωp) eV
293 K 0.1131–0.4286 898 0.7090–0.7694 1.148–1.218
393 K 0.1084–0.4272 952.3 0.6780–0.7326 1.008–1.160
493 K 0.1037–0.4266 1012.4 0.6487–0.6911 1.034–1.093
593 K 0.1000–0.4261 1064.5 0.6276–0.6563 0.8057–0.8448
693 K 0.0961–0.4253 1123.6 0.7628–0.8099 1.120–1.181
793 K 0.0931–0.4233 1172.4 0.7312–0.7803 1.074–1.133

Table 4. Variation of refractive index with width of PBG at different temperatures for parameters
f = 0.5, a = 2λp, d1/a = 0.5, Radius = 10 nm.

Temp. Width of PBG (nm)
Refractive index at (ω/ωp)

0.15 0.25 0.35 0.45

293 K 898 3.3388–0.05197i 8.4847-4.4934i 0.1360–1.5505i 0.9942–0.05097i

393 K 952.3 3.3385–0.0564i 8.1640–4.5004i 0.1475–1.5497i 0.9449-0.0552i

493 K 1012.4 3.3381–0.0608i 7.8670–4.4912i 0.1590–1.5489i 0.9455–0.0595i

593 K 1064.5 3.3377–0.0653i 7.5902–4.4694i 0.1707–1.548i 0.9462–0.0639i

693 K 1123.6 3.3373–0.0698i 7.3346–4.4381i 0.1825–1.5471i 0.9470-0.0682i

793 K 1172.4 3.3368–0.0322i 7.0982–4.3997i 0.1943–1.5461i 0.9478–0.0726i

3.2. Modulation of Dielectric Permittivity of Nanocomposite with Temperature

The variation in real part of the dielectric permittivity ε′mix depends on the frequency. The variation
in dielectric permittivity for filling factor f = 0.7 at radii 2 nm, 5 nm and 10 nm when ω/ωp = 0.2
and ω/ωp = 0.4 are shown in Figures 4(a) and 4(b). The values of the dielectric permittivity are
12.367, 45.456 and 108.14 for radii 2 nm, 5 nm and 10 nm at temperature 293 K. It is concluded that the
dielectric permittivity decreases with temperatures for different radii when ω/ωp = 0.2, but it increases
when ω/ωp = 0.4. The values of the dielectric permittivity of a nanocomposite system are calculated
at various temperatures for different radii 2 nm, 5 nm and 10 nm and filling factors f = 0.2 and f = 0.7
when ω/ωp = 0.2, which are shown in Table 2. It is shown that the value of dielectric permittivity
increases with filling factor and size of the nanoparticle, but it decreases with temperature.
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Table 5. Width of PBG at temperature 293 K for different radii for parameters a = 2λp, d1/a = 0.5.

Radius
Width of PBG (nm)

Filling Factor
0.1 0.4 0.7 0.9

2 nm 444.1 854.8 1516.4 3147.2
5 nm 417.7 783.7 1317.3 2485.4
10 nm 405.1 762.3 1274 2300.9

Table 6. Position of PBG at temperature 493 K for the parameters f = 0.3, a = 2λp, d1/a = 0.5.

Radius PBG1 (ω/ωp) eV PBG2 (ω/ωp) eV PBG3 (ω/ωp) eV PBG4 (ω/ωp) eV PBG5 (ω/ωp) eV

2nm 0.1263–0.4855 0.6230–0.6797 1.014–1.070 1.418–1.476 1.826–1.883

5 nm 0.1282–0.4273 0.6256–0.6685 1.014–1.070 1.418–1.476 1.816–1.883

10 nm 0.1286–0.4059 0.6261–0.6686 1.015–1.070 1.419–1.476 1.827–1.884
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Figure 5. Transmission spectra of PBG for filling
factor f = 0.5 at temperature 293 K and 493 K for
parameters R = 10 nm.
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Figure 6. Variation of refractive index with PBG
at different temperatures for parameters f = 0.5,
R = 10.

3.3. Modulation Effects of PBG

3.3.1. Due to Temperature

On increasing the temperature, the bandgap shifts towards higher wavelength region, and the width
of the PBG is increased. The transmission spectra of PBG for the size of radius 10 nm at different
temperatures 293 K and 493 K for filling factor f = 0.5 are shown in Figure 5. We get one larger band
gap in Vis-IR and many smaller band gaps in the UV region. The band gaps are specified in terms
of (ω/ωp) normalized frequency, and the frequency are calculated as (0.1131) ωp. The position of the
PBG for filling factor f = 0.5 and the radius of the nanoparticle is 10 nm at different temperatures as
shown in Table 3. The width of the first PBG is represented in units of wavelength. We specify some
of the band gaps in the table and notice that the width of the band gaps increase while increasing the
temperature. The band gaps are positioned within the range (0.0900) ωp − (0.4500)ωp.

The variation of refractive index at different values of (ω/ωp) and the width of the PBG for different
temperatures are shown in Table 4. The value of refractive index decreases when (ω/ωp) = 0.15 and
(ω/ωp) = 0.25 and increases when (ω/ωp) = 0.35 and (ω/ωp) = 0.45. It is concluded that the value
of refractive index depends on frequency and is high when (ω/ωp) = 0.25. The variation in refractive
index with the width of PBG when (ω/ωp) = 0.25 is shown in Figure 6.
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Figure 7. Transmission spectra of PBG for
filling factor f = 0.1, f = 0.4 and f = 0.7
at temperature 293 K for parameters R = 2 nm,
a = 2λp, d1/a = 0.5.
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Figure 8. Transmission spectra of PBG for filling
factor f = 0.3 at temperature 493 K for different
radii when a = 2λp, d1/a = 0.5.

3.3.2. Due to Filling Factor

Modulation effects of PBG due to filling factor for radius R = 2 nm at temperature 293 K is studied
using Equation (7). We observe many smaller band gaps in addition to a largest band gap as shown in
Figure 7. The widths of the band gap for the filling factors f = 0.1, 0.4 & 0.7 are shown in Table 5,
which shows that the PBG increases with filling factor.

3.3.3. Due to Radius

The PBG is also analysed for different radii, i.e., R = 2 nm, 5 nm & 10 nm at 493 K temperature for
the filling factor f = 0.3. The transmission spectra of the PBG for filling factor f = 0.3 at temperature
493 K is shown in Figure 8. By increasing the size of the nanoparticles it is found that the width of
the photonic band gap decreases, and the gap shifts towards higher wavelength region. The position of
PBG at temperature 493 K for f = 0.3 for various radii is tabulated in Table 6.

4. CONCLUSIONS

We have studied various possibilities to modify and tune the optical properties of SiO2 matrix doped
with silver nanoparticles. The value of the dielectric permittivity can be altered by changing the
parameters such as the filling factor, size of the nanoparticle and temperature changes. The variation
of composite dielectric permittivity with normalized frequency is analysed. It is concluded that the
resonance occuring here is mainly based on the filling factor. As the filling factor changes, resonance
occurs at different places. It is found that the width of the frequency range which represents the metallic
optical properties is increased when the filling factor and the size of the nanoparticle increase. It is also
observed that this value decreases with increase in temperature. The PBG can also be tuned by varying
the size of the nanoparticles & filling factor. We conclude that we can tune the width of the photonic
band gaps by changing the filling factor, size of the nanoparticle and temperature. These new optical
properties can be used in manufacturing optical devices.

The TMM method employed for calculating the band gap has been used by several investigators
in the past, e.g., in [19]. Also instead of SiO2, TiO2 has been used by Labbani and Benghalia [21]. The
results obtained are in broad agreement.

Even though the band gap does not change appreciably with temperature, other physical parameters
such as dielectric permittivity, volume expansion coefficient show appreciable variations which in turn
provide additional information.
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