Vol. 40
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-11-21
An Efficient Mode Reduction Technique for Modeling of Waveguide Gratings
By
Progress In Electromagnetics Research M, Vol. 40, 1-8, 2014
Abstract
In this paper, an efficient mode reduction technique for eigenmode expansion method is developed to analyze 2-D waveguide grating structures which are a special class of piecewise uniform waveguides. To take advantage of the periodicity property of the structure, the eigenmode expansion method (EEM) is used with the scattering matrix method and a recursive-doubling procedure. In this situation, our proposed mode reduction technique achieves a significant speedup for gratings with large number of periods. Comprehensive numerical examples on the waveguide gratings are studied to validate the efficiency of our proposed mode reduction technique.
Citation
Lijun Yuan, and Yu Mao Wu, "An Efficient Mode Reduction Technique for Modeling of Waveguide Gratings," Progress In Electromagnetics Research M, Vol. 40, 1-8, 2014.
doi:10.2528/PIERM14100305
References

1. Liu, Q. H. and W. C. Chew, "Analysis of discontinuities in planar dielectric waveguides: An eigenmode propagation method," IEEE Transcations on Microwave Theory and Techniques, Vol. 39, No. 3, 422-430, 1991.
doi:10.1109/22.75283

2. Sztefka, G., H. P. Nolting, and , "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photonics Technology Letters, Vol. 5, 554-557, 1993.
doi:10.1109/68.215279

3. Willems, J., J. Haes, and R. Baets, "The bidirectional mode expansion method for 2-dimensional wave-guides — the TM case," Optical and Quantum Electronics, Vol. 27, 995-1007, 1995.
doi:10.1007/BF00558491

4. Helfert, S. F. and R. Pregla, "Efficient analysis of periodic structures," Journal of Lightwave Technology, Vol. 16, 1694-1702, 1998.
doi:10.1109/50.712255

5. Bienstmain, P. and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers ," Opt. Quant. Electron., Vol. 33, 327-341, 2001.
doi:10.1023/A:1010882531238

6. Silberstein, E., P. Lalanne, J. P. Hugonim, and Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Am. A, Vol. 18, 2865-2875, 2001.
doi:10.1364/JOSAA.18.002865

7. Ctyrok´y, J., "Improved bidirectional mode expansion propagation algorithm based on Fourier series," Journal of Lightwave Technology, Vol. 25, No. 9, 2321-2330, 2007.
doi:10.1109/JLT.2007.901449

8. Rao, H., R. Scarmozzino, and R. M. Osgood, "A bidirectional beam propagation method for multiple dielectric interfaces," IEEE Photonics Technology Letters, Vol. 11, No. 7, 830-832, 1999.
doi:10.1109/68.769722

9. Ho, P. L. and Y. Y. Lu, "A stable bidirectional propagation method based on scattering operators," IEEE Photon. Technol. Lett., Vol. 13, No. 12, 1316-1318, 2001.
doi:10.1109/68.969893

10. Ho, P. L. and Y. Y. Lu, "A bidirectional beam propagation method for periodic waveguides," IEEE Photon. Technol. Lett., Vol. 14, 325-327, Mar. 2002.

11. Yuan, L. and Y. Y. Lu, "An efficient bidirectional propagation method based on Dirichlet-to-Neumann maps," IEEE Photonics Technology Letters, Vol. 18, 1967-1969, Sep. 2006.
doi:10.1109/LPT.2006.882279

12. Yuan, L. and Y. Y. Lu, "A recursive doubling Dirichlet-to-Neumann map method for periodic waveguides," Journal of Lightwave Technology, Vol. 25, 3649-3656, Nov. 2007.

13. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd Edition, Artech House, 2000.

14. Mendoza-Suarez, A., F. Villa-Villa, and J. A. Gaspar-Armenta, "Numerical method based on the solution of integral equations for the calculation of the band structure and reflectance of one- and two-dimensional photonic crystals," J. Opt. Soc. Am. B, Vol. 23, No. 10, 2249-2256, 2006.
doi:10.1364/JOSAB.23.002249

15. Mendoza-Suarez, A., H. P´erez-Aguilar, and F. Villa-Villa, "Optical response of a perfect conductor waveguide that behaves as a photonic crystal," Progress In Electromagnetics Research, Vol. 121, 433-452, 2011.
doi:10.2528/PIER11082405

16. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

17. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304

18. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," Journal of Optical Society of America A, Vol. 13, No. 5, 1024-1035, 1996.
doi:10.1364/JOSAA.13.001024

19. Ctyroky, J., S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J.-P. Hugonin, and R. M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Optical and Quantum Electronics, Vol. 34, 455-470, 2002.
doi:10.1023/A:1015645425239

20. Chiou, Y. P., Y. C. Chiang, and H. C. Chang, "Improved three-points formulas considering the interface conditions in the finite-difference analysis of step-index optical devices," J. Lightwave Technology, Vol. 18, No. 2, 243-251, 2000.
doi:10.1109/50.822799

21. Bindal, P. and A. Sharma, "Modelling of photonic crystal waveguides: A simple and accurate approach," Optical and Quantum Electronics, Vol. 42, No. 8, 435-446, Jan. 2011.
doi:10.1007/s11082-010-9431-x