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An Efficient Mode Reduction Technique for Modeling
of Waveguide Gratings

Lijun Yuan1 and Yu Mao Wu2, *

Abstract—In this paper, an efficient mode reduction technique for eigenmode expansion method is
developed to analyze 2–D waveguide grating structures which are a special class of piecewise uniform
waveguides. To take advantage of the periodicity property of the structure, the eigenmode expansion
method (EEM) is used with the scattering matrix method and a recursive-doubling procedure. In
this situation, our proposed mode reduction technique achieves a significant speedup for gratings with
large number of periods. Comprehensive numerical examples on the waveguide gratings are studied to
validate the efficiency of our proposed mode reduction technique.

1. INTRODUCTION

Waveguide grating structures that are piecewise uniform and periodic in the longitudinal direction are
widely used in many modern optical devices. Numerical simulations of the wavefields are essential in the
design and analysis of these structures. Existing methods for analyzing such structures with multiple
longitudinal discontinuities include various eigenmode expansion methods (EEM) [1–7], the bidirectional
beam propagation method (BiBPM) [8–12], the finite difference time domain (FDTD) method [13] and
the quation integral method [14, 15]. Efficient numerical techniques are in great need for modeling the
wavefields of the considered structures.

In various EEM, the wave field in each longitudinally uniform segment is expanded in terms of
the eigenmodes of the transverse operator. For an open waveguide, the transverse direction has to
be truncated into finite interval by adopting absorbing boundary conditions, such as the perfectly
matched layers (PMLs) [16, 17]. After that, the eigenmodes can be calculated semi-analytically by
solving a nonlinear equation, if the refractive index profile in each segment is piecewise constant in
the transverse direction. On invoking the PMLs, the propagation constants of eigenmodes may be
complex. Hence, it is not a simple task to compute all solutions from this nonlinear equation in the
complex domain. In this situation, eigenmodes can be efficiently calculated by numerical methods such
as the finite element method [1], the finite difference method [4], and Fourier series [6, 7]. If transverse
direction is discretized with N grid points, eigenmodes of each segment can be computed by O(N3)
operations. Since the waveguide grating is periodic, the eigenvalue problem only needs to be solved in
two segments. Meanwhile, EEM can be implemented in serval different ways. One of the widely used
and robust method is the scattering matrix method [6, 18]. For a 2D waveguide grating with m periods,
scattering matrix method needs O(mN3) operations. By adopting the recursive-doubling procedures,
the number of operations can be reduced to O(N3log2m).

The BiBPMs rely on the rational approximation of a square root operator and its exponential. For
deeply etched waveguides with large index-contrast, BiBPMs are very difficult to model the radiation
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and evanescent modes. FDTD [13] is a widely used method in the simulation of optical structures. But
it requires a small grid size to resolve large index-contrast and a small time step to ensure numerical
stability. Integral equation method [14, 15] offers an efficient way to analyze bandgaps of photonic
crystals and reflectance of waveguides. Furthermore, on invoking the integral equation method, only
the surface needs to discretize and avoids the discretization of the whole computation domain, and
therefore significantly reduce the number of unknowns [14]. Meanwhile, integral equation method also
can efficiently simulate very complicate geometries. In [15], an integral equation method was extensively
studied, and then adopted to analyze the optical response from PEC waveguide composed of two periodic
and one-dimensional rough surfaces.

In this paper, we develop a mode reduction technique for the analysis of 2D waveguide grating
with large number of periods. After the process that the scattering matrix of one period is calculated
using the full set of eigenmodes, our approach can significantly reduce the number of modes used in the
construction of the scattering matrix of the whole structure. By using a recursive doubling procedure,
our approach can reduce the total number of operations to O(N3) + O(N3∗ log2m), where N∗ (N∗ < N)
is the number of retained modes. For structures with large m, a significant speedup could be achieved.
The error induced by our mode reduction technique is small even the number of retained eigenmodes
N∗ is less than one third of N . In the future, it is possible to extend our approach to analyze 3D
waveguides and 2D slab photonic structures.

2. PROBLEM FORMULATION

Let {x, y, z} be a Cartesian coordinate system, we consider the structure and the electromagnetic field
are both independent of z. Then, the z–components of the time harmonic field satisfy the following
Helmholtz equation
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where k0 is the free space wavenumber, ε the relative permittivity, and μ the relative permeability.
u = Ez and ρ = μ correspond to the transverse electric (TE) polarization. u = Hz and ρ = ε
correspond to the transverse magnetic (TM) polarization.

A piecewise uniform waveguide with the main propagation direction in x is a structure with
discontinuity points x1 < x2 < . . . < xm, such that ε and μ depend only on y, i.e., ε = ε(l)(y)
and μ = μ(l)(y), in the lth uniform segment given by x < x1 if l = 1, xl−1 < x < xl if 1 < l ≤ m,
and x > xm if l = m + 1. We are particularly interested in waveguide gratings for which m is an even
integer, the segments with odd l correspond to the original waveguide. The segments with even l are
modifications (such as grooves) etched on the original waveguide. The structure is periodic with period
L = x3 − x1 for x1 ≤ x ≤ xm. An example with five grooves (m = 10) is depicted in Fig. 1. For such
a structure, the standard problem is to calculate the transmitted and reflected wave fields for incident
waves given in the semi-infinite uniform segments x < x1 and x > xm.
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Figure 1. A schematic view of a piecewise uniform waveguide with 5 grooves (m = 10). The thickness
of waveguide core is d and the deepness of grooves is de. The width of the “teeth” and “grooves” are
L1 and L0, respectively. The period is L = L0 + L1.

3. EIGENMODE EXPANSION METHOD

The EEM is popular for 2D piecewise uniform waveguides, since it avoids the discretization of x variable
(along the waveguide axis) and is relatively efficient. To avoid the continuous spectra of open waveguides
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and to model the radiation modes, PMLs [16, 17] can be used to truncate the y variable. Let the y
variable be truncated to the interval (y0, y∗), then, the eigenmodes of the l-th uniform segment satisfy
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where φ(l) = φ(l)(y) is an eigenfunction, [β(l)]2 the corresponding eigenvalue, β(l) the propagation
constant of the eigenmode, and s = s(y) a complex function related to the PMLs (s �= 1 only in the
PMLs). Furthermore, the eigenfunctions must satisfy some simple homogeneous boundary conditions
at y0 and y∗, that is,

φ(l)(y0) = φ(l)(y∗) = 0. (3)

The above eigenvalue problem has an infinite sequence of eigenpairs which are denoted as φ
(l)
j and β

(l)
j

for j = 1, 2, . . .. We assume that the fundamental mode of the l-th segment is φ
(l)
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constant β
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1 .

In each uniform segment, the wave field can be decomposed as the sum of forward and backward
components, and they can be expanded in the transverse eigenmodes. In the l-th segment where
1 < l ≤ m, the wave field is given as
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For the first and last segments, the expansions have the following different expressions:
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In the above, the coefficients ã
(1)
j and b̃

(m+1)
j are given, and they represent the incident waves in the left

and right semi-infinite waveguides, respectively. The unknown coefficients {a(l)
j : 2 ≤ l ≤ m + 1, j =

1, 2, . . .} and {b(l)
j : 1 ≤ l ≤ m, j = 1, 2, . . .} can be solved from the linear system
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where al and bl are column vectors for a
(l)
j and b

(l)
j , respectively. f is related to the incident waves, and

A is a matrix with a banded structure. Equation (7) can be established from the continuity conditions
of u and ρ−1∂xu at x = xl for 1 ≤ l ≤ m.

Many different implementations of EEM exist, and they correspond to different ways for computing
the transverse eigenmodes and enforcing the continuity conditions. If ε(l)(y) and μ(l)(y) are piecewise
constant, then, the eigenvalue problem (2) and (3) can be solved analytically. In this sense, the
eigenfunctions are given analytically, while the eigenvalues must be solved numerically as the zeros
of a transcendental function. This approach is not so convenient, as it is not easy to systematically find
all zeros of a function in the complex plane, and it is also not clear how to choose the first N eigenmodes.
Here, N is the truncation order for the expansions. On the other hand, it is very simple to solve the 1D
eigenvalue problem by a numerical method. In that case, Eqs. (2) and (3) are approximated by a matrix
eigenvalue problem with a N × N matrix, where N now corresponds to the number of discretization
points for y. The matrix eigenvalue problem gives rise to N numerical eigenmodes. If we use all these
modes, then al and bl are vectors of length N . Since the coefficient matrix A has a banded structure,
the linear system (7) can be solved in O(mN3) operations.
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4. SCATTERING MATRIX METHOD

The scattering matrix method [6, 18] is often used with EEM to avoid the large linear system (7) and
reduce the memory requirement from O(mN2) to O(N2). For a general piecewise uniform waveguide,
the scattering matrix method cannot reduce the required number of operations. But if the structure is
periodic, it can be accelerated by a recursive-doubling procedure. Then, the number of operations can
be reduced to O(N3 log2 m). The scattering matrix method calculates the scattering matrix S(x−

1 , x+
m)

satisfying

S(x−
1 , x+

m)
[

ã1

b̃m+1

]
=

[
am+1

b1

]
, (8)

with ã1 and b̃m+1 as column vectors for coefficients ã
(1)
j and b̃

(m+1)
j of the incident waves. If the

structure is periodic, the matrix S(x−
1 , x+

m) can be computed from the scattering matrix for a single
period. A brief summary of the scattering matrix method and the recursive-doubling procedure in given
in Appendix A.

5. MODE REDUCTION PROCEDURE

First, we calculate the scattering matrices of individual segments using all numerical eigenmodes. Next,
we reduce the size of these scattering matrices, and use them to find a reduced version of the final
scattering matrix S(x−

1 , x+
m). For a waveguide grating with periodic feature, we only need to consider

the segment given by x1 < x < x2. The scattering matrix for the considered segment, denoted as
S(x−

1 , x+
2 ), satisfies
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where b̃3 is a column vector, and coefficients b̃
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j are used in the following expansion
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In the fully discretized version, S(x−
1 , x+

2 ) is a (2N) × (2N) matrix and can be calculated in O(N3)
operations. If we only keep N∗ modes, then S(x−

1 , x+
2 ) is approximated by a (2N∗) × (2N∗) matrix,

and it can be used to find a (2N∗) × (2N∗) approximation of the final scattering matrix S(x−
1 , x+

m)
in O(N3∗ log2 m) operations. Therefore, the total number of operations is O(N3) + O(N3∗ log2 m). In
particular, for large m, a significant speedup may be achieved.

To select the modes, we first normalize the eigenmodes such that∫ y∗
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For an incident fundamental mode φ
(1)
1 (y)eiβ

(1)
1 (x−x1) (i.e., ã1 = [1, 0, . . . , 0]T and b̃3 = 0), the coefficients

of the transmitted and reflected waves of one period are the first column of matrix S(x−
1 , x+

2 ). Let g be
the vector containing the first N elements of the first column of matrix S(x−

1 , x+
2 ). We select the modes

based on the magnitudes of the elements of g. More precisely, for an integer N∗ < N , we choose N∗
elements with the largest magnitude in g, and find the mode indices for all these elements, and finally
get the N∗ modes that we need to keep. Based on the N∗ selected modes, by keeping the corresponding
row and column elements in S(x−

1 , x+
2 ), we could find a (2N∗)× (2N∗) matrix approximating S(x−

1 , x+
2 ).

6. NUMERICAL EXAMPLES

The first example is a modeling exercise of COST 268 [19]. It is about an optical waveguide with a
deeply etched short Bragg grating as shown in Fig. 1. The original waveguide is formed by a Si3N4 layer
of the thickness d = 0.5µm deposited onto a SiQ2 substrate. The refractive indices of waveguide core
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and the substrate are frequency dependent and given in [19]. The Bragg grating is composed of 1024
rectangular grooves with a grating period of L = 0.43µm. The widths of the “tooth” and “groove” are
chosen to be equal, i.e., L0 = L1 = 0.215µm. The groove depth is de = 0.625µm. In all examples,
we assume that an incident fundamental mode is coming from x < x1. In numerical implementation,
the transverse y direction is truncated by PMLs to an interval with length 4.5µm with 2.5µm in the
substrate and 1.5µm in the air, and discretized by a fourth-order FD scheme [20] with N = 180 grid
points. Fig. 2 shows the absolute values of the first 180 elements in the first column of S(x−

1 , x+
2 ) at

wavelength λ = 1.55µm. We can see that the values decay very fast with the increasing mode index
for both TE and TM cases. Under certain error tolerance, we can discard the modes corresponding to
elements with small magnitudes in constructing an approximation to scattering matrix S(x−

1 , x+
m).
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Figure 2. The absolute value of the first 180
elements in the first column of S(x−

1 , x+
2 ) in the

first example with wavelength λ = 1.55µm. Top
and bottom pictures correspond to TE and TM
polarizations, respectively.
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Figure 3. The reflection and transmission
spectra calculated by EEM with and without
mode reduction technique in the first example.
Top figure corresponds to the TE polarization;
bottom figure corresponds to the TM polarization.
N∗ = 50 modes are used in the mode reduction
technique.
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Figure 4. Error of transmission and reflection
computed by EEM with mode reduction technique
for different N∗ and N in the first example.
Left figure is for transmission of TE polarization
at wavelength λ = 1.48µm; right figure is for
reflection of TM polarization at wavelength λ =
1.29µm. Blue star, green circle and red triangle
are for N = 180, N = 360 and N = 720,
respectively.
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spectra for TE polarization calculated by EEM
with and without mode reduction technique in the
second example. N∗ = 80 modes are used in the
mode reduction technique.
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To demonstrate the effectiveness of the simulation of wavefields from the proposed mode reduction
technique, Fig. 3 shows the reflection and transmission spectra calculated by EEM with and without
mode reduction technique. The number of retained modes in mode reduction technique is N∗ = 50.
In this paper, the “exact” results refer to the results computed by EEM without mode reduction
technique. We can see that the mode reduction technique can produce very accurate results with less
than 30% of the total modes. The largest maximum absolute error of reflection and transmission for
TE polarization is 4.3 × 10−3 and 7.0 × 10−4, respectively. The largest maximum absolute error for
reflection and transmission of TM polarization is 7.0 × 10−4 and 6.0 × 10−4, respectively. At two fixed
wavelengths, error of transmission and reflection computed by EEM with different N∗ and N is shown
in Fig. 4. Generally, high accuracy can be achieved by using less than 30% of the modes.

The second example is a high index contrast optical waveguide as shown in Fig. 1. The thickness
of the waveguide core is d = 0.22µm and the depth of the “grooves” is de = d. The width of the
“teeth” and “grooves” are L1 = 0.175µm and L0 = 0.135µm, respectively. There are 1024 periods.
The refractive indexes of the waveguide core and substrate are n2 = 3.4 and n3 = 1.45, respectively.
The superstrate is air. In numerical calculation, the transverse y direction is truncated by PMLs to
an interval of length 3.08µm with 1.54µm in substrate and 1.32µm in superstrate and discretized by
N = 280 grid points. The reflection and transmission spectra for TE polarization calculated by EEM
with and without mode reduction technique are given in Fig. 5. The number of retained modes in mode
reduction technique is N∗ = 80. The largest maximum absolute error for reflection and transmission is
2.5× 10−4. Fig. 6 shows the error of reflection computed by EEM with mode reduction technique with
different N∗ and N at wavelength 1.62µm for TE polarization.
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Figure 6. Error of reflection computed by EEM
with mode reduction technique with different N∗
and N in the second example at wavelength λ =
1.62µm for TE polarization. Blue star for N =
280, green circle for N = 560 and red triangle for
N = 1120.
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Figure 7. The reflection and transmission
spectra of the defect waveguide calculated by
EEM with and without mode reduction technique
for TE polarization in the third example. N∗ = 30
modes are used in the mode reduction technique.

In the third example, we consider a defect structure that has been studied in Section 5.3 in [21].
The defect waveguide contains 8 grooves with the central “tooth” be 1.515µm width. Other parameters
are the same as that in the second example. The reflection and transmission spectra calculated by EEM
with and without mode reduction technique for TE polarization are shown in Fig. 7. The transverse
direction is discretized by N = 280 grid points, and N∗ = 30 modes are used in the mode reduction
technique. The largest maximum absolute error for both reflection and transmission is 1.3 × 10−3 and
3.8 × 10−3, respectively. For such short structures, mode reduction technique could gain high accuracy
with about 10% of the total modes.

7. CONCLUSION

We have developed a mode reduction technique for eigenmode expansion method (EEM) to analyze
2–D waveguide grating structures. Our mode reduction is based on the scattering matrix method and
contains three steps. First, eigenmodes of two different segments are calculated by a fourth-order finite
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difference method after the transverse direction is truncated by PMLs. This step costs O(N3) operations
with N as the number of discrete grid points in transverse direction. Second, the scattering matrix of
a single period is computed using the full set of eigenmodes with O(N3) operations. Finally, the most
important N∗ (N∗ < N) eigenmodes are selected elegantly and used to construct the scattering matrix
of the whole structure by a recursive-doubling procedure. This requires O(N3∗ log2m) operations for a
structure with m periods. The total number of operations is O(N3)+O(N3∗ log2m). Numerical examples
demonstrate that we can obtain a high accuracy with N∗ less than one third of N .
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APPENDIX A. SCATTERING MATRIX METHOD WITH RECURSIVE-DOUBLING

In this section, a brief summery of how to use recursive-doubling procedure to calculate the scattering
matrix S(x−

1 , x+
m) of periodic structures is given in [6, 18]. Since the structure is symmetry, the scattering

matrix S(x−
1 , x+

2 ) for segment x1 < x < x2 can be written in blocks form as

S(x−
1 , x+

2 ) =
[
T R
R T

]
. (A1)

To compute matrices T and R, we first compute the scattering matrix of a single interface. With
expressions (5) and (4) truncated to N terms and using the continuity conditions of u at interface
x = x1, a (2N) × (2N) scattering matrix S(x−

1 , x+
1 ) for interface x = x1 can be obtained as

S(x−
1 , x+

1 )
[
ã1

b̃2

]
=

[
S(1)

11 S(1)
12

S(1)
21 S(1)

22

][
ã1

b̃2

]
=

[
a2

b1

]
, (A2)

where b̃2 = Γ2b2, and Γ2 is a N × N diagonal matrix with jth diagonal eiL0β
(2)
j for j = 1, 2, . . . , N .

Similarly, form Equations (4) and (10) and the continuity conditions of u at x = x2, we have a scattering
matrix S(x−

2 , x+
2 ) at interface x = x2 as

S(x−
2 , x+

2 )
[
ã2

b̃3

]
=

[
S(2)

11 S(2)
12

S(2)
21 S(2)

22

][
ã2

b̃3

]
=

[
a3

b2

]
, (A3)

where ã2 = Γ2a2. Eliminating ã2 and b̃2 form Equations (A2) and (A3), we have

T = S(1)
22 Γ2PS(2)

22 , R = S(1)
21 + S(1)

22 Γ2PS(2)
21 Γ2S

(1)
11 , (A4)

where P = (I − S(2)
21 Γ2S

(1)
12 Γ2)−1 and I is the identity matrix.

To compute scattering matrix S(x−
1 , x+

m) of the whole periodic structure, we first rewrite it as

S(x−
1 , x+

m) =
[
Tm Rm

Rm Tm

]
. (A5)

If the number of segments m is a power of 2, i.e., m = 2K , let T1 = T and R1 = R, the recursive-
doubling procedure is given as

T2k+1 = T2kΓ1P2kT2k , R2k+1 = R2k + T2kΓ1P2kR2kΓ1T2k , (A6)

for k = 0, 2, . . . ,K − 1, where Γ1 is a N × N diagonal matrix with the jth diagonal element eiL1β
(1)
j

for j = 1, 2 . . . , N and P2k = (I − R2kΓ1R2kΓ1)
−1. The total number of operations is O(N3K), i.e.,

O(N3log2m).
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