Vol. 40
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-19
Estimation of the Ageing of Metallic Layers in Power Semiconductor Modules Using the Eddy Current Method and Artificial Neural Networks
By
Progress In Electromagnetics Research M, Vol. 40, 129-141, 2014
Abstract
In high power operations, the ageing of power semiconductor modules has been often observed by several failures due to high temperature cycling. The main failures may be metallization reconstruction, solder delaminations, bond wire lift-offs or bond wire heel crackings, conchoidal breaking of ceramics. The paper focuses on the non-contact monitoring of the ageing of the aluminum metallization top layer and of the solder bottom layer of a power die, using the eddy current method. The ageing is assumed to induce a decrease of these layers conductivity. The evaluation of both layers conductivity changes are estimated using artificial neural networks starting from eddy current data provided by finite element computations carried out in the case of several aged die configurations. The error of estimation is less than a few percent in the considered cases and it demonstrates the relevance of the eddy current method to monitor the ageing state of power modules. The proposed approach provides relevant results which will be validated on experimental data in future works.
Citation
Tien Anh Nguyen, Pierre-Yves Joubert, and Stephane Lefebvre, "Estimation of the Ageing of Metallic Layers in Power Semiconductor Modules Using the Eddy Current Method and Artificial Neural Networks," Progress In Electromagnetics Research M, Vol. 40, 129-141, 2014.
doi:10.2528/PIERM14091602
References

1. Lutz, J., T. Hermann, M. Feller, R. Bayerer, T. Licht, and R. Amro, "Power cycling induced failure mechanisms in the viewpoint of rough temperature environment," Proceedings of the 5th International Conference on Integrated Power Electronic Systems, 55-58, Nuremberg, Mar. 2008.

2. Ciappa, M., "Selected failure mechanisms of modern power modules," Microelectronics Reliability, Vol. 42, No. 4-5, 653-667, 2002.
doi:10.1016/S0026-2714(02)00042-2

3. Martineau, D., T. Mazeaud, M. Legros, P. Dupuy, C. Levade, and G. Vanderschaeve, "Characterization of ageing failures on power MOSFET devices by electron and ion microscopies," Microelectronics Reliability, Vol. 49, No. 9-11, 1330-1333, 2009.
doi:10.1016/j.microrel.2009.07.011

4. Detzel, T., M. Glavanovics, and K. Weber, "Analysis of wire bond and metallisation degradation mechanisms in DMOS power transistors stressed under thermal overload conditions," Microelectronics Reliability, Vol. 44, No. 9-11, 1485-1490, 2004.
doi:10.1016/j.microrel.2004.07.044

5. Smet, V., F. Forest, J. Huselestein, A. Rashed, and F. Richardeau, "Evaluation of VCE monitoring as a real time method to estimate ageing of bon wire --- IGBT modules Stressed by power cycling," IEEE Transactions on Industrial Electronics, Vol. 60, No. 7, 2760-2770, 2013.
doi:10.1109/TIE.2012.2196894

6. Pietranico, S., S. Lefebvre, S. Pommier, and M. Berkani Bouaroudj, "A study of the effect of degradation of the aluminum metallization layer in the case of power semiconductor devices," Microelectronics Reliability, Vol. 51, No. 9-11, 1824-1829, 2011.
doi:10.1016/j.microrel.2011.06.009

7. Udpa, S. and P. Moore, Nondestructive Testing Handbook, 3rd Edition, Vol. 5, Electromagnetic Testing, The American Society for Nondestructive Testing, 2004.

8. Rava, C., P.-Y. Joubert, Y. Le bihan, C. Marchand, M. Woytasik, and E. Dufour-Gergam, "Non-destructive evaluation of small defects using an eddy current microcoil sensor array," Sensor Letter, Vol. 7, No. 3, 400-405, 2009.
doi:10.1166/sl.2009.1061

9. Nguyen, T. A., P.-Y. Joubert, S. Lefebvre, G. Chaplier, and L. Rousseau, "Study for the noncontact characterization of metallization ageing of power electronic semiconductor device using the eddy current technique," Microelectronics Reliability, Vol. 51, No. 6, 1127-1135, 2011.
doi:10.1016/j.microrel.2011.02.002

10. Nguyen, T. A., P.-Y. Joubert, S. Lefebvre, and S. Bontemps, "Monitoring of ageing chips of semiconductor power modules using eddy current sensor," Electronics Letters, Vol. 49, No. 6, 415-417, 2013.
doi:10.1049/el.2012.4387

11. Rojas, R., Neural Networks: A Systematic Introduction, Springer, Berlin, 1996.

12. Vernon, S.-N., "The universal impedance diagram of the ferrite pot core eddy current transducer," IEEE Transactions on Magnetics, Vol. 25, No. 3, 2639-2645, 1989.
doi:10.1109/20.24503

13. Le Bihan, Y., "Study on the transformer equivalent circuit of eddy current nondestructive evaluation," NDT&E International, Vol. 36, No. 5, 297-302, 2003.
doi:10.1016/S0963-8695(03)00003-3

14. Bore, T., P.-Y, Joubert, and D. Placko, "A differential DPSM based modeling applied to eddy current imaging problems," Progress In Electromagnetics Research, Vol. 148, 209-221, 2014.
doi:10.2528/PIER14032405

15. Cacciola, M., F. C. Morabito, D. Polimeni, and M. Versaci, "Fuzzy characterization of flawed metallic plates with eddy current tests," Progress In Electromagnetics Research, Vol. 72, 241-252, 2007.
doi:10.2528/PIER07031301

16. Joubert, P.-Y., E. Vourc’h, and V. Thomas, "Experimental validation of an eddy current probe dedicated to the multi-frequency imaging of bore holes," Sensors and Actuators A, Vol. 185, 132-138, 2012.
doi:10.1016/j.sna.2012.07.009

17. Hasanzadeh, R. P. R., A. R. Moghaddamjoo, S. H. H. Sade Ghi, A. H. Rezaie, and M. Ahmadi, "Optimal signal-adaptive maximum likelihood filter for enhancement of defects in eddy current C-scan images," NDT&E International, Vol. 41, No. 5, 371-377, 2008.
doi:10.1016/j.ndteint.2008.01.005

18. Yusa, N., N. Huang, and K. Miya, "Numerical evaluation of the ill-posedness of eddy current problems to size real cracks," NDT&E International, Vol. 40, No. 3, 185-191, 2007.
doi:10.1016/j.ndteint.2006.10.012

19. Agatonovic, M., Z. Stankovic, I. Milovanovic, N. Doncov, L. Sit, T. Zwick, and B. Milovanovic, "Efficient neural network approach for 2D DOA estimation based on antenna array measurements," Progress In Electromagnetics Research, Vol. 137, 741-758, 2013.
doi:10.2528/PIER13012114

20. Wefky, A., F. Espinosa, L. D. Santiago, A. Gardel, P. Revenga, and M. Martinez, "Modeling radiated electromagnetic emissions of electric motorcycles in terms of driving profile using MLP neural networks," Progress In Electromagnetics Research, Vol. 135, 231-244, 2013.
doi:10.2528/PIER12102510

21. Hornik, K., M. Stinchcombe, and H. White, "Multilayer feed-forward networks are universal approximators," Neural Networks, Vol. 2, No. 5, 359-366, 1989.
doi:10.1016/0893-6080(89)90020-8

22. Peng, X., "Eddy current crack extension direction evaluation based on neural network," Proceedings of IEEE Sensors, 1-4, 2012.

23. Vourc’h, E., P.-Y. Joubert, G. Le Gac, and P. Larzabal, "Nondestructive evaluation of loose assemblies using multi-frequency eddy currents and artificial neural networks," Measurement Science and Technology, Vol. 24, No. 12, 7 Pages, 2013.
doi:10.1088/0957-0233/24/12/125604

24. Demuth, H. and M. Beale, Neural Network Toolbox for Use with MATLAB, Neural Network Toolbox for Use with MATLAB Sep. 2000.

25. Levenberg, K., "A method for the solution of certain non-linear problems in least squares," Quarterly Journal of Applied Mathematics, Vol. II, No. 2, 164-168, 1944.

26. Hagan, M. T. and M. Menhaj, "Training feed-forward networks with the Levenberg-Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, No. 6, 989-993, 1994.
doi:10.1109/72.329697

27. Smith, M., Neural Network for Statistical Modeling, Van Nostrand-Reinhold, New York, 1993.