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Estimation of the Ageing of Metallic Layers in Power
Semiconductor Modules Using the Eddy Current

Method and Artificial Neural Networks
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Abstract—In high power operations, the ageing of power semiconductor modules has been often
observed by several failures due to high temperature cycling. The main failures may be metallization
reconstruction, solder delaminations, bond wire lift-offs or bond wire heel crackings, conchoidal breaking
of ceramics. The paper focuses on the non-contact monitoring of the ageing of the aluminum
metallization top layer and of the solder bottom layer of a power die, using the eddy current method.
The ageing is assumed to induce a decrease of these layers conductivity. The evaluation of both layers
conductivity changes are estimated using artificial neural networks starting from eddy current data
provided by finite element computations carried out in the case of several aged die configurations. The
error of estimation is less than a few percent in the considered cases and it demonstrates the relevance
of the eddy current method to monitor the ageing state of power modules. The proposed approach
provides relevant results which will be validated on experimental data in future works.

1. INTRODUCTION

Electronic power modules are widely used for energy processing purposes, and their development extends
to more and more industrial domains, such as automotive or aeronautics, with increasing demands
in terms of reliability. Standard power modules are constituted of semiconductor dies soldered on
direct copper bonded (DCB) ceramic substrate, as shown in Figure 1. Inside power modules, electrical
connections are made by soldering or wire bonding between metallized layers. In addition, the DCB is
implanted on a metallic base plate used as a mechanical support as well as a thermal cooler. The upper
side of the modules is covered with an insulating silicone gel used to avoid partial discharges within the
module. As a result, these modules are constituted of stacks of materials of various natures featured by
various electro-mechanical properties. They include semiconductors, electrically conductive materials
(metallic layers, solder layers. . .), and insulators (silicone gels, ceramics).

In many applications, power modules have to operate within variations of the ambient temperature,
referred as passive temperature cycles [1, 2], which may reach high amplitudes. For instance, the
environment temperature may rise to 120◦C in the automotive application, or even to 200◦C in
the vicinity of aircraft jet engines. Furthermore, power modules are submitted to so-called active
temperature cycles, which are relative to temperature variations resulting from their own power
dissipation [1, 2]. Due to the different thermal expansion coefficients of the materials constituting
the power modules, the thermal cycles induce mechanical stresses which may result in various types of
degradations, such as solder delaminations, bond wire lift-offs and heel cracking, ceramics conchoidal
fractures, or metallization reconstruction [1–6].
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(a) (b)

Figure 1. Multilayered conductive structure of power semiconductor module, (a) top view of a typical
module, (b) schematic cut view.

Therefore, the analysis and evaluation of the degradation process is a key issue for optimizing the
use of power modules as well as for preventing failures. In particular, the degradation of the metallized
layers of chips has been highlighted by many authors as a major source of failure [1, 2, 6]. As a result, the
non-destructive evaluation (NDE) of such layers may help to better understand the alteration process,
and subsequently, to foresee and prevent failures.

The eddy current (EC) method allows the quantitative NDE of metallic layers to be carried out [7],
and hence, it is a good candidate to evaluate the ageing state of chip metallization and solder layers.
Furthermore, the method is easy to implement, non contact, robust, and suitable to in situ NDE
applications, providing EC micro-sensors [8] are considered. Previous works carried out by the authors
have shown that EC methods can quantitatively diagnose the state of thermally-aged 4µm aluminum
single layers deposited on a silicon bulk [9]. The same authors have also experimentally highlighted that
the EC technique implemented in a wide frequency range was relevant to qualitatively sense the ageing
state of different conducting layers in an actual power module sample [10].

In this study, the authors aim at assessing the feasibility of the quantitative EC NDE of the
ageing state of multiple conductive layers of an aged power module die. To do so, a typical transistor
chip soldered on a DCB substrate is considered. For this chip, the alteration of the upper aluminum
metallization and the bottom-side soldering layer are jointly considered. Since it is difficult to obtain
module samples featuring such layers of adjustable ageing state, data only provided by finite element
(FE) computations are considered in this study. In order to evaluate the feasibility of the method,
computed data relative to the interactions between a mini-cup-core bobbin-coil EC sensor and a
transistor featured by adjustable ageing parameters are used. Parametric computations enable data
relative to various ageing states to be provided. These data are firstly used to analyze and evaluate the
sensitivity of the EC method to multiple layer alterations. They are used secondly to feed an artificial
neural network (ANN) [11] so as to elaborate an able estimator to evaluate the ageing parameters of the
considered transistor layers, starting from the available EC data. In the second section of this paper, the
considered transistor sample and the implemented EC method are presented. Then, the implementation
of the FE computations is described and obtained results are discussed. In Section 3, the elaboration of
the used ANN and the estimation of transistor ageing state using the ANN are addressed. Conclusions
are presented in Section 4.

2. IMPLEMENTATION OF THE EC NDE OF AN AGED TRANSISTOR CHIP

2.1. Basic Principles of the EC Method Used

The eddy current (EC) method has been used for the NDE of electrically conductive parts for many
decades [7]. Indeed, EC NDE is a rather popular method since it is easy to implement, contactless and
sensitive to the geometric and electric parameters of the part under test. The most basic EC sensor
configuration is given by a single bobbin coil (possibly associated with a ferrite core) fed by a time
harmonic current and used as a transmit and receive probe. When such a coil probe is placed near to
the part to be tested, the magnetic field generated by the probe induces eddy currents within the part.
The resulting electromagnetic coupling between the probe and the part depends on the measurement
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distance (lift-off) and on the properties of the part. These parameters may be sensed through the
impedance changes measured at the ends of coil. The EC data used in this study are the complex
normalized impedance Zn of the probe, which can be expressed as [12]:

Zn = Rn + jXn =
R−R0

X0
+ j

X

X0
(1)

where R0 and X0 are the resistance and the reactance of the uncoupled probe respectively, and R
and X are respectively the resistance and the reactance of the complex impedance of the probe when
coupled to the test part. The use of Zn is more relevant than the use of the impedance Z = R + jX
of the coupled probe because it enables getting rid of the influence of the constitution of the probe
(losses R0 and self reactance X0 of the coil winding [12]) to focus on the impedance changes due to
the tested part. Indeed, the normalized impedance Zn only depends on the used excitation frequency,
the electromagnetic properties (electrical conductivity σ, magnetic permeability) and the geometric
properties of the part (sensor lift-off, layer thickness) [13].

In the case of large massive metallic parts of known thickness, it has been established that the
normalized impedance of the sensor coupled to the part may be expressed using a simple analytical
coupling model based on the analogy to an electrical transformer [12, 13]. This model enables to
foresee the frequency responses of Zn according to the geometric and electromagnetic properties of
the investigated material. It also allows the universal impedance diagram (UID), which is the evolution
of Zn plotted in the (Rn, Xn) complex plane, to be plotted for frequencies ranging from 0 to infinity [12].
For massive plane parts, the UIDs feature expected patterns. In practice, these expected patterns can be
used to estimate the part parameters starting from EC data provided in adequate frequency bands. In
the case of a thin aluminum film deposited on a silicon substrate, the authors have shown in [9] that the
ageing state of the thin film may be quantified starting from the alterations of the UID resulting from
the modifications of its conductivity with thermal fatigue. Moreover, the authors have experimentally
pointed out that the frequency response Zn of a commercial EC sensor being implemented in the
5Hz–2.5 MHz bandwidth was relevant to sense the ageing of metallic layers in power semiconductor
module [10]. Indeed, at low frequencies, the obtained EC data were found to be sensitive to the ageing
state of the solder layer and the DCB substrate of the power module. Conversely, at high frequencies,
due to skin effect in the metallic layers [7], the EC data were found to be mainly related to the
power module chip, and more specifically to the metallized top layer of the chip [10]. However, these
preliminary experimental results only enable to assess the effects of the metallization ageing. The actual
ageing state evaluation requires one i) to develop an accurate modeling tool of the interactions between
the EC probe/power module [14, 15] and ii) to solve the inverse problem so as to estimate the value of
the metallization conductivity starting from the collected EC data.

In order to assess the feasibility of the quantitative EC estimation of the ageing state of multiple
conducting layers of the die, in this study the authors have chosen to turn to FE modeling to provide EC
data related to multilayer aged specimens. The implementation of such FE computations is presented
in the following subsection.

2.2. Simulation of Electromagnetic Coupling between EC Probe and Power
Semiconductor

In this section, finite element (FE) computations of the EC testing of a typical power module transistor
chip are reported. To do so, a cup-core bobbin coil sensor (NORTEC† 3551F-1 MHz) commercialized by
NORTEC is considered. The coils have an effective sensitive area of approximately 2 mm in diameter.
The preferred frequency range is from 1MHz to 2MHz.

Assuming that the used EC sensor is of sufficiently small radius comparatively to the transistor chip
surface (6.59 × 10.52 mm2), the whole simulation workspace may be considered as being axisymmetric.
Therefore two-dimensional (2D) electromagnetic computations are carried out using 2D ANSYS‡
software. A standard power semiconductor module consists of a silicon die, a DCB substrate, and
a base plate. The silicon die is made of a thin aluminum metallization layer, a low doping silicon layer
† http://www.olympus-ims.com/en/ec-probes/
‡ http://www.ansys.com/
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(epitaxial layer), and a high doping silicon layer (substrate). The die is soldered to the DCB substrate.
The resultant solder layer is around 80 µm. The dimensions and constitutive parameters of each layer
have been chosen as close as possible to the ones of a typical power module (e.g., MOSFET module
fabricated by Microsemi [10]). Dimensions and features are gathered in Table 1 and the corresponding
computational axisymmetric workspace is depicted in Figure 2.

In order to implement the FE computations, a quasi static analysis is used featuring FE element
PLANE13 in the ANSYS software. The harmonic model uses the magnetic vector potential formulation
to solve the eddy current region and each node of the elements owns a magnetic vector potential as
degree of freedom. Here we chose a quadrilateral element featuring 4 nodes in rotational axisymmetry
(Figure 2).

Magnetic boundary conditions are applied to the exterior boundaries of the workspace. The Y axis

Figure 2. Simulation of multilayered structure of power semiconductor module.

Table 1. Dimensions and physical parameters of layers in the simulated structure.

���������Layer
Parameter Thickness

(µm)

Width

(mm)

Electrical

conductivity

(S·m−1)

Relative

magnetic

permeability

Aluminum

metallization
5 5.3 37.7 × 106 1

Low doping

Silicon
50 5.3 25 1

High doping

silicon
170 5.3 0.25 × 106 1

Solder 80 5.3 6.67 × 106 1

Nickel 4 15.8 14.4 × 106 200

Upper copper

of DCB
300 15.8 60 × 106 1

Ceramic 380 15.8 1 × 10−17 1

Lower copper

of DCB and

base plate

3000 15.8 60 × 106 1
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represents the rotational symmetry axis. The parallel flux condition is applied to this axis. Also, the
open boundaries are set to parallel flux conditions. Figure 2 shows the magnetic flux parallel condition
at the y-axis of the model and at the open boundaries.

The procedure of data extraction will be described below. The FE computation allows simulating
the magnetic flux (ψ) going through the sensor core. The electromotive force (EMF ) induced at the
ends of the sensor coil is calculated as follows:

EMF = j · 2 · π · f · ψ (2)

where f is the excitation frequency, j is the imaginary unit.
Then the impedance Z of the sensor (Z = R+ j ·X) is determined with the expression given by:

Z =
EMF
I

(3)

where I is the excitation current.
The normalized impedance (Zn) is then computed using Eq. (1) after FE computations of the

sensor in unloaded and loaded configurations.
In the considered FE workspace, the material parameters which are modified by the ageing process

are the electrical conductivity of both the power die aluminum layer and the solder layer between the
power die and the DCB subtract. For the initial state of the power module, the aluminum conductivity
σ0

al has been set to the value of bulk aluminum, i.e., σ0
al = 37.7 MS·m−1. In the same way, the solder

conductivity σ0
solder at initial state is set to be equal to the conductivity of Sn63Pb37 alloy, widely used in

the standard power modules, i.e., σ0
solder = 6.67 MS·m−1. Then, the ageing of both layers are simulated

by decreasing the conductivity of these layers. The reduction factors are denoted αal and αsolder for the
aluminum and solder layers, respectively. They are such that:

σal =
σ0

al

αal

σsolder =
σ0

solder

αsolder

(4)

In this study, αal ranges from 1 to 19, and αsolder ranges from 1 to 11, these values being estimated to
be realistic, considering previous experimental evaluations [9, 10]. These variations lead to a large set of
possible ageing configurations. Figure 3 provides some examples of UID computed in the 5 Hz–2.5 MHz
bandwidth for sound and aged configurations.
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Figure 3. Universal Impedance Diagram (UID) of EC normalized impedance for the three ageing states
and an initial state of aluminum and solder layer for a power semiconductor module.
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In Figure 3 the initial state (αal = 1, αsolder = 1), two intermediate ageing states (αal = 1,
αsolder = 11), (αal = 19, αsolder = 1), and the most advanced ageing state (αal = 19, αsolder = 11)
are considered. The UID obtained of the most considerable ageing state has the smallest local radius
at low frequencies and the shortest length, the UID featuring the smallest radius at high frequencies
corresponds to the ageing state of only conductivity variation of aluminum layer (αal = 19, αsolder = 1),
and the UID corresponding the only conductivity variation of solder layer (αal = 1, αsolder = 11) has
the greatest radius at high frequencies. It isn’t easy to claim the behavior change of UID in the case of
the ageing state of both these layers jointed. However, theoretically, we can note that the low frequency
part of UID is mainly related to the solder and substrate layers, and that the high frequency part of UID
is mainly related to the die. Indeed, at high frequencies, the EC induced in the substrate are strongly
reduced by the aluminum and solder layers which are highly conductive. This is why the substrate
is hardly sensed by the E probe at these frequencies. From these examples, one may conclude that a
relevant frequency band may be determined to select EC data for ageing evaluation purposes.

2.3. EC Data for the Estimation of Ageing

In order to estimate the conductivity variations of the power die aluminum and solder layers, the
variations of the normalized impedance between the ageing state and the initial state, denoted ΔZn is
defined as:

ΔZn = Zn (αal, αsolder ) − Zn

(
α0

al, α
0
solder

)
(5)

where Zn(α0
al, α

0
solder ) = Zn(1, 1) is the normalized impedance obtained at initial state.

The variations of the real and imaginary parts of ΔZn(f) versus frequency are presented in Figures 4
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Figure 4. ΔZn as a function of the excitation frequency for several values of the conductivity of
the aluminum layer, the solder conductivity being fixed at the initial state, (a) real part of ΔZn,
(b) imaginary part of ΔZn.
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Figure 5. ΔZn as a function of the excitation frequency for several values of the solder conductivity,
the aluminum layer conductivity being fixed at the initial state, (a) real part of ΔZn, (b) imaginary
part of ΔZn.
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Figure 6. ΔZn as a function of the excitation frequency for several values of the aluminum layer
conductivity and of the solder layer conductivity, (a) real part of ΔZn, (b) imaginary part of ΔZn.

to 6 for various ageing configurations. Figure 4 illustrates the influence of the aluminum conductivity
(σal) on the variations of ΔZn(f), the aluminum layer is successively altered by six attenuation
values αal = [3, 5, 7, 9, 13, 19], while the solder conductivity is fixed at initial state (αal = 1). In
the same manner, Figure 5 illustrates the influence of the solder layer conductivity, σsolder (with
αsolder = [3, 5, 7, 9, 11]) on the variations of ΔZn(f), the aluminum conductivity is fixed at initial
state (αal = 1). Finally, Figure 6 shows the influence of both conductivity variations on ΔZn(f) for
(αal, αsolder ) taking values such as (3, 3); (7, 5); (11, 7); (15, 9); and (19, 11). These graphs point
out that there exists a relevant frequency band which enhances the sensitivity of the EC sensor to the
conductivity changes. In what follows, the frequency band (FB) used for estimation purposes is set to
FB = [11.8 kHz–2.5 MHz].

In addition, noisy EC data are considered in this study. Indeed, based on previous experiments [10],
EC data measured with the NORTEC sensor on such a power module structure feature a signal to noise
ratio (SNR) close to 60 dB. So as to be more realistic in this study, computed EC data have been altered
by additive white noise standing for so electronic noise as well as measurement uncertainties such as
sensor positioning repeatability [16]. This additive noise is added in equal proportion to both the real
and the imaginary parts of ΔZn so that [17]:

SNR = 20 × log10

⎛
⎝ max |ΔZn|√

λ2
real + λ2

imag

⎞
⎠ (6)

where λreal and λimag are the standard deviations of the noise altering the real and imaginary parts of
ΔZn, respectively. Starting from these noisy EC data, the evaluation of the conductivity variations of
aluminum and solder layer using artificial neural network is implemented in the following section.

3. EVALUATION OF CONDUCTIVITY VARIATION OF ALUMINUM AND
SOLDER LAYER USING ARTIFICIAL NEURAL NETWORK

The goal of this study is to estimate the variations of the aluminum conductivity (σal) and solder
conductivity (σsolder ) during the ageing process. In order to bypass the difficulties of inverting a
numerical model to estimate these parameters starting from EC data [18], a model-free estimation
technique based on the use of an ANN is considered. This kind of approach has been proven to be efficient
in various modeling and estimation problems in the electromagnetic domain [19, 20]. In this study, a
feed-forward neural network (FFNN) is implemented to estimate the conductivity variations [21]. This
particular ANN was found relevant in several eddy current estimation problems [22, 23]. In this paper,
the authors use the neural network toolbox of Matlab to implement the FFNN estimation [24].

To do so, the available noisy EC data are divided into three data sets: the training database, the
validation database and the test database. These different datasets are used to separately optimize the
weights, the biases and the size of the ANN (number of neurons of the hidden layer). The training
database is used to feed the network during training process, and the network parameters are adjusted
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according to the estimation errors observed in known configurations. The validation database is used to
measure network generalization ability and to halt training process when generalization stops improving.
The testing database has no effect on the training. It is used to provide an estimation of the network
performances during and after training [24].

3.1. Elaboration of the FFNN for Estimating Conductivity Variations

The inputs of FFNN consist of the multi-frequency EC data ΔZn obtained in various configurations of
aged module. For each selected configuration, 21 different values of ΔZn obtained for 21 frequencies
logarithmically distributed in the frequency band FB, are considered.

Since the real and the imaginary parts of ΔZn are separately considered, the FFNN is fed with a
total amount of 42 inputs. The FFNN features two outputs, the estimated conductivity of the aluminum
layer (σ̂al) and the estimated conductivity of the solder layer (σ̂solder ). The used FFNN is finally set
with a single hidden layer, as depicted in Figure 7.

Among the EC data provided by FE computations, the training and validation database has been
created from the normalized impedance variations (ΔZn) of sixty configurations of ageing states.
These sixty configurations correspond to the ten values of aluminum conductivity in the range of
αal = [1, 3, 5, . . . , 19] given by the odd factors of αal, and the six values of solder conductivity in
the range of αsolder = [1, 3, 5, . . . , 11] given by the odd factors of αsolder . Figure 8 illustrates these
sixty configurations of ageing state selected in the first data set (training and validation process). Then
we will chose the second data set (testing database) of ageing states which are different from the ageing
states of the training and validation databases. The testing database has been made from ΔZn values
for nine configurations of ageing state which correspond to three values of aluminum conductivity in
the range of αal = [8, 10, 12] given by the even factors of αal and three values of solder conductivity in
the range of αsolder = [4, 6, 8] given by the even factors of αsolder . The testing databases allow us to
calculate the estimation error of each built ANN.

After adding the noise to the EC data, each value of ΔZn will be multiplied by M different values
(M = 30) around ΔZn which ensures the signal-noise-ratio (SNR) of 60 dB as defined in the Section 2.3.
For the training and validation databases, the total number of input-output couples of EC data is equal
to 60 × 30 = 1800. For the testing database, the total number of input-output couples is equal to
9 × 30 = 270. Each input-output couple of EC data is featured by 42 inputs consisting of the real and
imaginary part of ΔZn and 2 outputs relative to the actual values of conductivities σal and σsolder .

Because the neural network minimization problem is often ill-conditioned, the ANN training process
uses the back propagation Levenberg-Marquardt algorithm [25, 26], and its generalization ability was
assessed according to a cross-validation procedure [27].

Figure 7. Fully connected feed-forward ANN with
one hidden layer and one output layer used for the
estimating the conductivity variation.
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To do so, among 1800 input-output couples of the training and validation database, 1/6 of the
data corresponding to the ageing states located in the limits of ageing (αal = 1 and αal = 19) have
been dedicated to the validation process of ANN, the remaining data being dedicated to the training
process of the ANN. In order to search for an optimized ANN we consider ANNs having the number
of neurons in the hidden layer varying from 1 to 80. Then we select the network corresponding to
the lowest estimation error. Using the testing database, the root mean square error (RMSE ) between
the estimated conductivities (σ̂al and σ̂solder ) and the actual conductivities (σal and σsolder ) have been
calculated for every network using:

RMSE =

√√√√√ 1
N

×
N∑

i=1

⎛
⎝ 1
M

×
M∑

j=1

(σ̂ij − σ)2

⎞
⎠ (7)

where M is the number of generated values simulating the added noise, M = 30, N is the number of
configurations of ageing state, N = 9 with the testing database of the second data set.

Figure 9 shows the evolution of RMSE of σ̂al and σ̂solder calculated from the testing database as a
function of number of neuron in the hidden layer. We can note that a hidden layer featuring 56 neurons
is a good choice to keep the evaluation error as low as possible for the estimation of σal and σsolder .

3.2. Estimation Results

Joint estimation of aluminum conductivity and solder conductivity has been performed by mean of
the ANN selected in Section 3.1. In order to test the generalization capability of the chosen network,
the testing database has been enlarged by the different ageing states that are located outside of the
training and validation database. Now the new testing database corresponds to six values of aluminum
conductivity in the range of αal = [8, 10, 12, 14, 16, 18] and three values of solder conductivity in the
range of αsolder = [4, 6, 8]. As a result, the new testing database is constituted of 18 ageing state
configurations. The chosen frequency band and the noise power added to the EC data were the same
as previously described. In order to quantify the estimation results, we define the estimate bias (μ) as
the mean value of the estimated conductivity. The mean and the standard deviation of the values of
the estimated conductivity (std) for M estimated values of each ageing configuration are given by:

μ =
1
M

×
M∑

k=1

σ̂k (8)
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std =

√√√√ 1
M − 1

×
M∑

k=1

(σ̂k − μ)2 (9)

where σ and σ̂ represent the considered conductivity σal and σsolder (true values) and its estimation
respectively. M is still defined as the number of generated values simulating the added noise, M = 30.

Figure 10 illustrates all ageing configurations of the new testing database corresponding to the
actual conductivities (σal and σsolder ) and the estimated ones (σ̂al and σ̂solder ). The estimated
conductivities are represented by their mean values μ (Eq. (8)) with the error bar being equal to
the standard deviation, std (Eq. (9)). One can note that the estimations are satisfactory with the very
small deviations between the estimated and actual values of the conductivities.

Figures 11 to 13 represent the conductivity estimation when the solder conductivity has been fixed
at the value corresponding to the factors of αsolder = 4, 6, 8 respectively and the aluminum conductivity
is the value of new testing data corresponding to the factor of αal = [8, 10, 12, 14, 16, 18]. The solid
lines represented on these figures link the points corresponding to the estimate bias (Eq. (8)) and the
error bars plotted around these points show the estimation standard deviation (Eq. (9)). The dashed
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Figure 11. Results of joint estimation of σal and σsolder for αal = [8, 10, 12, 14, 16, 18] and αsolder = 4,
(a) estimation of aluminum conductivity, (b) estimation of solder conductivity. (The error bar
corresponds to the standard deviation, centered on the estimate bias μ).
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Figure 12. Results of joint estimation of σal and σsolder for αal = [8, 10, 12, 14, 16, 18] and αsolder = 6,
(a) estimation of aluminum conductivity, (b) estimation of solder conductivity. (The error bar
corresponds to the standard deviation, centered on the estimate bias μ).
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Figure 13. Results of joint estimation of σal and σsolder for αal = [8, 10, 12, 14, 16, 18] and αsolder = 8,
(a) estimation of aluminum conductivity, (b) estimation of solder conductivity. (The error bar
corresponds to the standard deviation, centered on the estimate bias μ).

Figure 14. Histogram of estimation error for the
aluminum conductivity.

Figure 15. Histogram of estimation error for the
solder conductivity.

lines link the points corresponding to the actual conductivities.
In addition, Figure 14 and Figure 15 illustrate the histogram of estimation errors. The error of

estimation is calculated for all 540 input-output couples of the new testing data, the error of estimation
being given by the following expression:

error = 100% × σ̂ − σ

σ
(10)

where σ̂ and σ are the estimated conductivity and the actual conductivity, respectively.
Figure 14 represents the three histograms of the aluminum conductivity estimation error,

corresponding to the solder conductivity factor αsolder = 4, 6, 8, respectively. In the same way, Figure 15
represents the three histograms of the solder conductivity estimation error. It can be noted that the
error of all estimated conductivities is below 4%. Particularly, the error of estimation of aluminum
conductivity is higher than that of solder conductivity. This difference can be explained by the influence
of the selected frequency band. Indeed, the maximal frequency of 2.5 MHz is not high enough to be
solely sensitive to the aluminum layer. Therefore the EC data contain information of both the solder
layer and the aluminum layer all over the used frequency band. Thus to improve the estimation results
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in the aluminum layer, the maximal frequency should be increased so that at high frequencies, the
influence of the solder layer would be negligible. In Figure 15, we note that the most aged configuration
of the solder layer corresponding to the lowest conductivity provides the highest error of estimation.
This may be due to the fact that because of the decrease of solder conductivity, the electromagnetic
interaction between the EC probe and the solder layer becomes weaker, thus EC data is less sensitive
to the solder layer of lower conductivity. In this case, to improve the results of estimation in the solder
layer, the minimal frequency of investigation should be decreased.

Thus, the results of estimation show that by exploiting the simulated EC data featuring noise
corresponding to a 60 dB SNR, we can estimate the evolution of ageing state of both aluminum and
solder layers using an ANN. These preliminary results are very encouraging and invite us to apply this
method to data provided by the experiment on actual power module samples.

4. CONCLUSIONS AND PERSPECTIVES

The paper focuses on the estimation of conductivity variation in the multilayered structure of a power
semiconductor module using the EC method during an ageing process. The authors have used the
ANN to estimate the conductivity variations of the aluminum and the solder layers in the power
module by exploiting the simulation data of electromagnetic coupling between the EC probe and
the multilayered structure of power module. The data used on this study are simulated EC data
provided by FE computations. They are computed for different ageing configurations corresponding
to conductivity changes appearing in two metallic layers (aluminum and solder). The results indicate
that the implemented ANN allows estimating the conductivity of aluminum layer and solder layer with
an estimation error less than 4%. The study demonstrates that the EC method is relevant for the
estimation of the ageing state of power modules.

Further research will focus on the experimental validation of the methods. Once the variation of
aluminum and solder conductivity are validated on a real power semiconductor module, the development
of integrated EC systems dedicated to the health monitoring of power electronic components will be
envisaged.
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