Vol. 49
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-10-23
A Flexible Broadband Antenna and Transmission Line Network for a Wearable Microwave Breast Cancer Detection System
By
Progress In Electromagnetics Research Letters, Vol. 49, 111-118, 2014
Abstract
First, we report on the design, simulation and measurement of a 2-4 GHz conformable antenna optimized for skin contact and implemented on a flexible printed circuit for integration into a wearable device. Second, we experimentally verify the suitability of appropriately long (~10 cm) microstrip traces for the wearable system signal distribution network, which features varying radii of curvature. Consequently, the contribution of the here reported work is two-fold. First, the experimental results obtained both with breast phantoms and on-body measurements, demonstrate a return loss below -10 dB in the desired frequency band. Phantom results also show a through-breast transmission coefficient of above -40 dB at the centre frequency of 3 GHz. Second, and essential for signal integrity in our target application, the results show that the longitudinal curvature of such a microstrip does not increase transmission line losses.
Citation
Emily Porter, Gregory Walls, Yahe Zhou, Milica Popović, and Joshua D. Schwartz, "A Flexible Broadband Antenna and Transmission Line Network for a Wearable Microwave Breast Cancer Detection System," Progress In Electromagnetics Research Letters, Vol. 49, 111-118, 2014.
doi:10.2528/PIERL14091003
References

1. Nikolova, N. K., "Microwave biomedical imaging," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-22, Apr. 2014.
doi:10.1002/047134608X.W8214

2. Zeng, X., A. Fhager, M. Persson, P. Linner, and H. Zirath, "Accuracy evaluation of ultrawideband time domain systems for microwave imaging," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4279-4285, Nov. 2011.
doi:10.1109/TAP.2011.2164174

3. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array-experimental results," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856

4. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 11, 1841-1853, Nov. 2000.

5. Bourqui, J., J. Garrett, and E. C. Fear, "Measurement and analysis of microwave frequency signals transmitted through the breast," International Journal of Biomedical Imaging, Vol. 2012, 1-11, Article ID 562563, 2012.

6. Porter, E., E. Kirshin, A. Santorelli, M. Coates, and M. Popović, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas Wireless Propag. Lett., Vol. 12, 229-232, 2013.
doi:10.1109/LAWP.2013.2247374

7. Kanj, H. and M. Popović, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
doi:10.2528/PIER08090701

8. Yoon, H. K., W. S. Kang, Y. J. Yoon, and C.-H. Lee, "A flexible UWB antenna attachable to various kinds of materials," Proc. IEEE International Conference on Ultra-Wideband (ICUWB), 204-209, Singapore, Sep. 24–26, 2007.

9. Peter, T. and R. Nilavan, "A study on the performance deterioration of flexible UWB antennas," Proc. Loughborough Antennas & Propagation Conf., 669-672, Loughborough, UK, Nov. 16–17, 2009.

10. Karacolak, T. and E. Topsakal, "A double-sided rounded bow-tie antenna (DSRBA) for UWB communication," IEEE Antennas Wireless Propag. Lett., Vol. 5, 446-449, 2006.
doi:10.1109/LAWP.2006.885013

11. Nikolaou, S., D. E. Anagnostou, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou, "Compact ultra wide-band (UWB) CPW-fed elliptical monopole on liquid crystal polymer (LCP)," Proc. IEEE Antennas and Propagation Society International Symposium, 4657-4660, Jul. 9–14, 2006.

12. Sugitani, T., S. Kubota, A. Toya, X. Xiao, and T. Kikkawa, "A compact 4×4 planar UWB antenna array for 3-D breast cancer detection," IEEE Antennas Wireless Propag. Lett., Vol. 12, 733-736, 2013.
doi:10.1109/LAWP.2013.2270933

13. Bassi, M., M. Caruso, M. S. Khan, A. Bevilacqua, A.-D. Capobianco, and A. Neviani, "An integrated microwave imaging radar with planar antennas for breast cancer detection," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 5, 2108-2118, May 2013.
doi:10.1109/TMTT.2013.2247052

14. Santorelli, A., M. Chudzik, E. Kirshin, E. Porter, A. Lujambio, I. Arnedo, M. Popović, and J. D. Schwartz, "Experimental demonstration of pulse shaping for time-domain microwave breast imaging," Progress In Electromagnetics Research, Vol. 133, 309-329, 2013.
doi:10.2528/PIER12091008

15. Bourqui, J., M. Okoniewskiand, and E. C. Fear, "Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2318-2326, Jul. 2010.
doi:10.1109/TAP.2010.2048844

16. Tiang, S. S., M. Sadoon, T. F. Zanoon, M. F. Ain, and M. Z. Abdullah, "Radar sensing featuring biconical antenna and enhanced delay and sum algorithm for early stage breast cancer detection," Progress In Electromagnetics Research B, Vol. 46, 299-316, 2013.
doi:10.2528/PIERB12102201

17. Moussakhani, K., R. K. Amineh, and N. K. Nikolova, "High-efficiency TEM horn antenna for ultra-wide band microwave tissue imaging," Proc. 2011 IEEE International Symp. Antennas and Propagation (AP-S), 127–130, Spokane, Washington, USA, Jul. 3–8, 2011.

18. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "An improved hemispherical antenna array design for breast imaging," Proc. 2nd European Conference on Antennas and Propagation (EUCAP), 1-5, Edinburgh, Scotland, Nov. 11–16, 2007.

19. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues III: Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003

20. Lazebnik, M., M. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

21. Garrett, J. and E. Fear, "Stable and flexible materials to mimic the dielectric properties of human soft tissues," IEEE Antennas Wireless Propag. Lett., Vol. 13, 599-602, 2014.
doi:10.1109/LAWP.2014.2312925