Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-10-15
Study on Available Condition of Static Circuit Parameters Applied to Predict the Transmission Characteristics of Step Microstrip Line
By
Progress In Electromagnetics Research M, Vol. 39, 85-92, 2014
Abstract
The static circuit parameters extracted from the field results of non-uniform microstrip line provides an efficient way to predict dynamic effect of non-uniform structure. The predictable frequency range of the static circuit parameters on prediction of the transmission characteristics of step microstrip line is researched in this paper. The circuit parameters are extracted from the full wave results of step line, respectively, at three frequencies (9 GHz, 15 GHz and 20 GHz). On one hand, the time domain transmission characteristics of step line can be solved from the equivalent circuit constructed by these extracted circuit parameters. On the other hand, the frequency domain S-parameter can be derived by the static distributed characteristic impedance. By comparing these time and frequency domain results obtained from the static circuit parameters with those obtained directly from the full wave method, the available condition of the static circuit parameters of the step microstrip line can be analyzed. This comparison shows that the static circuit parameters can be used in frequency bands from DC up to 20 GHz. To verify the accuracy of the static parameters used to predict the transmission characteristics of step line, the measured S11 is also given for comparison with static circuit parameters measurements.
Citation
Ruigang Fu, Hui Zhang, Zengrui Li, Qing-Xin Guo, Jun-Hong Wang, Xueqin Zhang, and Yaoqing Lamar Yang, "Study on Available Condition of Static Circuit Parameters Applied to Predict the Transmission Characteristics of Step Microstrip Line," Progress In Electromagnetics Research M, Vol. 39, 85-92, 2014.
doi:10.2528/PIERM14083104
References

1. Mei, K. K., "From Kirchoff to Lorentz-modifying circuit theory for microwave and mm-wave structures," 25th International Conference on Infrared and Millimeter Waves, Conference Digest, 371-374, Sep. 12-15, 2000.

2. Wang, S. J. and R. Mittra, "A finite element cavity resonance method for waveguide and microstrip line discontinuity problems," IEEE Trans. Microwave Theory Tech., Vol. 42, 433-440, 1998.
doi:10.1109/22.277437

3. Liu, W. Y., J. S. Hong, and K. K. Mei, "Analysis of a double step microstrip discontinuity using generalized transmission line equations," Advanced Packaging, Vol. 26, No. 4, 368-374, Nov. 2003.
doi:10.1109/TADVP.2003.821080

4. Taflove, A. and S. Hagness, Computational Electromagnetics: The Finite-difference Time-domain Method, 3rd Edition, Artech House, Norwood, MA, 2005.

5. Yang, S., Y. Chen, and Z. P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.

6. Monorchio, A., A. R. Bretones, R. Mittra, et al. "A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems," IEEE Trans. on Antennas and Propagat., Vol. 45, No. 3, 527-532, Mar. 1997.
doi:10.1109/8.558668

7. Florencio, R., R. R. Boix, and J. A. Encinar, "Enhanced MoM analysis of the scattering by periodic strip gratings in multilayered substrates," IEEE Trans. on Antennas and Propagat., Vol. 61, No. 10, 5088-5090, 2013.
doi:10.1109/TAP.2013.2273213

8. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103

9. Fotyga, G., K. Nyka, and M. Mrozowski, "Multilevel model order reduction with generalized compression of boundaries for 3-D FEM electromagnetic analysis," Progress In Electromagnetics Research, Vol. 139, 743-759, 2013.
doi:10.2528/PIER13032708

10. Liu, W. Y. and K. K. Mei, "Generalized transmission line equations," Antennas and Propagation Society International Symposium, Vol. 3, 798, Jun. 2002.

11. Wang, C. Y., W. Hong, H. M. Wang, et al. "Analysis of non-uniform coupled transmission lines using generalized transmission line equations," APMC2005, Vol. 3, Dec. 4-7, 2005.

12. Khalaj-Amirhosseini, M., "Determination of capacitance and conductance matrices of lossy shielded coupled microstrip transmission lines," Progress In Electromagnetics Research, Vol. 50, 267-278, 2005.
doi:10.2528/PIER04061601

13. Wang, H. J., L. Shu, and Z. R. Li, "Determination of distributed circuit parameters of nonuniform transmission line by studying the transient behavior of reflected current," 6th International Symposium on Antennas, Propagation and EM Theory, 831-834, Oct. 28-Nov. 1, 2003.

14. Fu, G. R., H. Zhang, Z. R. Li, et al. "Study on the distributed capacitance and inductance of ladder-type loseless microstrip lines," CSQRWC2013, 93-96, Jul. 21-25, 2013.

15. Zhang, H., J. H. Wang, and W. Y. Liang, "Study on the applicability of extracted distributed circuit parameters of non-uniform transmission lines by equivalent circuit method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5–6, 839-848, 2008.
doi:10.1163/156939308784159444

16. Liang, Y. W., J. H.Wang, and H. Zhang, "Study on the applicability of the static distributed circuit parameters of non-uniform microstrip lines," International Journal of Infrared and Millimeter Waves, Vol. 28, No. 1, 43-50, 2007.
doi:10.1007/s10762-006-9178-4

17. Xing, F., Y. W. Liu, and W. M. Song, "Equivalent circuit of rectangular waveguide based on the generalized transmission line equation," Chinese Journal of Radio Science, Vol. 19, No. 1, 32-35, 2004.

18. Wang, Y., J. Li, and L. X. Ran, "An equivalent circuit modeling method for ultra-wideband antennas," Progress In Electromagnetics Research, Vol. 82, 433-445, 2008.
doi:10.2528/PIER08032303

19. Luthur, J. J., S. Ebadi, and X. Gong, "Extraction of equivalent circuit model parameters of the feedless rectangular microstrip patch," PSURSI2013, 302-303, Jul. 7-13, 2013.

20. Tuovinen, T. and M. Berg, "Impedance dependency on planar broadband dipole dimensions: An examination with antenna equivalent circuits," Progress In Electromagnetics Research, Vol. 144, 249-260, 2014.
doi:10.2528/PIER13112202

21. Ge, B. D. and Y. B. Yan, Finite-difference Time-domain Method for Electromagnetic Waves, 3rd Edition, Xidian University Press, Xi’an , 2011.