Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-10-17
Transient Analysis of a Rectangular Cavity Containing an Interior Scatterer Using TD-EFIE with Weighted Laguerre Polynomials as Temporal Basis Functions
By
Progress In Electromagnetics Research M, Vol. 39, 93-106, 2014
Abstract
Novel 2-D Time Domain Electric Field Integral Equations (TD-EFIE) are established in order to predict transient response of a wire enclosed within a rectangular cavity. The wire and cavity are excited by an external incident transient electromagnetic wave through a slot in the cavity wall. The formulation of the TD-EFIE is based on equivalence principle and boundary conditions taking account the effect of reflection from cavity walls. The equations are efficiently solved by Method of Moments. The transient unknown coefficients of the electric current at the wire and magnetic current at the slot are approximated using a set of orthonormal temporal basis functions derived from Laguerre Polynomials. The analysis demonstration is presented to prove that the novel TD-EFIE combined to MoM is able to solve this critical problem. No late-time instability is encountered.
Citation
Dorsaf Omri, and Taoufik Aguili, "Transient Analysis of a Rectangular Cavity Containing an Interior Scatterer Using TD-EFIE with Weighted Laguerre Polynomials as Temporal Basis Functions," Progress In Electromagnetics Research M, Vol. 39, 93-106, 2014.
doi:10.2528/PIERM14072108
References

1. Seidel, D. B., D. G. Dudley, and C. M. Butler, "Aperture excitation of a wire in a rectangular cavity," Interaction Notes, Note 345, June 1977.

2. Bailin, M. and D. K. Cheng, "Transient electromagnetic fields coupled into a conducting cavity through a slot aperture," Scientia Sinica (Series A), Vol. XXVII, No. 7, 775-784, July 1984.

3. Wen, G., "Time-domain theory of metal cavity resonator," Progress In Electromagnetics Research, Vol. 78, 219-253, 2008.
doi:10.2528/PIER07090605

4. Zhang, G.-H., M. Xia, and X.-M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-293, 2009.
doi:10.2528/PIER09032003

5. Zhang, G.-H., M. Xia, and C. H. Chan, "Time domain integral equation approach for analysis of transient responses by metallic-dielectric composite bodies," Progress In Electromagnetics Research, Vol. 87, 1-14, 2008.
doi:10.2528/PIER08092803

6. Rao, S. M., Time Domain Electromagnetics, Academic Press Series in Engineering, Auburn, 1999.

7. Pisharody, G., R. A. Wildman, and D. S. Weile, "Accurate solution of time domain integral equations using higher order vector bases and bandlimited extrapolation," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 555-558, 2003.

8. Weile, D. S., G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen, "A novel scheme for the solution of the time-domain integral equations of electromagnetics," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 1, 283-295, January 2004.
doi:10.1109/TAP.2003.822450

9. Jung, B. H., T. K. Sarkar, Z. Ji, and Y. S. Chung, "A stable solution of time domain electric field integral equation," IEEE, 2002.

10. Ji, Z., T. K. Sarkar, B. H. Jung, Y. S. Chung, M. S. Palma, and M. Yua, "A stable solution of time domain electric field integral equation for thin-wire antennas using the Laguerre Polynomials," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 10, 2641-2649, October 2004.

11. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre Polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001

12. Jung, B. H., T. K. Sarkar, Z. Ji, S. Jang, and K. Kim, "Transient electromagnetic scattering from dielectric objects using the electric field integral equation with Laguerre Polynomials as temporal basis functions," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 9, 2329-2340, September 2004.
doi:10.1109/TAP.2004.834062

13. Lacik, J. and Z. Raida, "Modeling microwave structures in time domain using Laguerre Polynomials," adioengineering, Vol. 15, No. 3, September 2006.

14. Mei, Z., Y. Zhang, X. Zhao, B. H. Jung, T. K. Sarker, and M. Salazar-Palma, "Choice of the scaling Factor in a marching-on-in-degree time domain technique based on the associated Laguerre Functions," IEEE Trans. on Antennas and Propagat., Vol. 60, No. 9, 4463-4467, September 2012.
doi:10.1109/TAP.2012.2207066

15. Guan, X., S. Wang, Y. Su, and J. Mao, "A method to reduce the oscillations of solution of time domain integral equation using Laguerre Polynomials," PIERS Online, Vol. 3, No. 6, 784-789, 2007.
doi:10.2529/PIERS060906092326

16. Gibson, W. C., The Method of Moments in Electromagnetics, 33-62, Chapman & Hall/CRC, US, 2008.

17. Coghetto, M. and C. Offelli, "A procedure for the evaluation of radiated emissions from polygonal wires with the method of moments," IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 334-339, 1999.

18. Chen, K. M., "A mathematical formulation of the equivalence principle," IEEE Trans. on Microwave Theory and Techniques, Vol. 37, No. 10, 1576-1581, October 1989.
doi:10.1109/22.41004

19. Booysen, A. J., "Aperture theory and the equivalence principle," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 29-40, June 2003.
doi:10.1109/MAP.2003.1232161

20. Booysen, A. J., "Aperture theory and the equivalence theorem," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1258-1261, 1999.