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Transient Analysis of a Rectangular Cavity Containing an Interior
Scatterer Using TD-EFIE With Weighted Laguerre

Polynomials as Temporal Basis Functions

Dorsaf Omri* and Taoufik Aguili

Abstract—Novel 2-D Time Domain Electric Field Integral Equations (TD-EFIE) are established in
order to predict transient response of a wire enclosed within a rectangular cavity. The wire and cavity
are excited by an external incident transient electromagnetic wave through a slot in the cavity wall.
The formulation of the TD-EFIE is based on equivalence principle and boundary conditions taking
account the effect of reflection from cavity walls. The equations are efficiently solved by Method of
Moments. The transient unknown coefficients of the electric current at the wire and magnetic current
at the slot are approximated using a set of orthonormal temporal basis functions derived from Laguerre
Polynomials. The analysis demonstration is presented to prove that the novel TD-EFIE combined to
MoM is able to solve this critical problem. No late-time instability is encountered.

1. INTRODUCTION

The study of transient response of conducting cavity due to excitation through an aperture is of
considerable practical interest. In fact, the transient inducing current can damage some critical
components in the system.

Developed analytical and numerical methods demonstrate the importance of an accurate prediction
of the cavity’s behaviors and the components enclosed in this cavity in order to overcome serious
problems.

However, accurate study has been presented in [1] to determine the currents excited on a wire
enclosing into a rectangular cavity and excited by EM wave trough the aperture. Moreover, this
problem is formulated in frequency domain, and the desired time domain currents were obtained by
numerical Inverse Fourier Transform (IFT). An exact solution using this method cannot be found
because convergence problems are often encountered. In [2], the singularity expansion method (SEM)
is used to determine the transient response of cavity. The SEM represents a solution of problem in
terms of singularities (poles) in the complex frequency plane. For early-time responses of the system,
the results are acceptable but less reliable.

A thorough study of time domain electromagnetic (TD-EM) theory of metal cavity resonator is
presented in [3]. The author proves the importance of TD-EM theory compared to TD harmonic
theory. Therefore, the formulation of this problem by TD-EM theory is more effective. In fact, several
approaches have been applied to this important and challenging task such as Finite difference Time
Domain (FDTD) method and Time Domain Integral Equation (TDIE) method. Many researches [4, 5]
have proven the effectiveness of TDIE compared to FDTD for transient analysis. So, the TDIE uses
fewer unknowns based on surface discretization and eliminates the artificial absorbing conditions (ABC).
The marching-on in time (MOT) method is usually employed to determine the solution of TDIE [6].
However, this technique suffers from late time instability. Many measures [7–10] have attempted to
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overcome this instability as the choice of appropriate temporal basis functions. In [10, 11], the authors
applied the weighted Laguerre Polynomials as temporal basis functions and obtained an accurate and
stable solution.

In this paper, the task is undertaken to numerically formulate and solve the problem of an aperture
which excites thin wire enclosing within rectangular cavity. The aperture is exited by an external
transient EM wave.

The TD-EFIE formulation of this problem is established by the combination of equivalence principle
and boundary conditions. It takes into account the effects of reflection from cavity walls.

The TD-EFIE is solved using the method of moments when we introduce a spatial and temporal
testing procedure. We use the piecewise triangular function associated with Dirac function as spatial
basis and testing functions. To obtain a late time stable solutions, Laguerre functions are used as
temporal basis and testing functions.

The paper is organized as follows. Section 2 describes the TD-EFIE formulation and the method of
solving these equations. In Section 3, the analysis demonstration with various parameters is presented.
Section 4 concludes this paper.

2. TD-EFIE FORMULATION

In order to predict a transient response of the wire enclosing within rectangular cavity, let us consider
the basic structure of Fig. 1(a). The structure is excited by transient EM wave exterior to the cavity
and is coupled to the cavity interior through slot.

In the investigation of electromagnetic problems, simplifications or approximations must be invoked
to simplify the problem. Indeed, the following hypotheses are assumed: 1) The cavity walls and the
wire are perfectly conducting and very thin; 2) the wire is oriented parallel to the slot; and 3) The wire
ends may not be in electrical contact with the cavity walls.

The analysis is based on the equivalence principle [18] which divides the complex problem into two
simpler problems as depicted in Fig. 1.
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Figure 1. Analyze Problem: (a) Initial Problem; (b) Equivalent domains; (c) Internal equivalent
problem; (d) External equivalent problem.

As demonstrated in [19, 20], the cavity walls and aperture are replaced by equivalent continuous
domain D3. The aperture has metalized, domain D2. An equivalent magnetic current Ms has been
introduced on it. D2 moves an infinitesimal distance away from equivalent domain D3. Mathematical
analysis of this step shows that the aperture appears to have been short-circuited. Finally, the wire
scattered is replaced by an equivalent domain D1, and an equivalent electric current density Js has been
introduced on it.

As shown in Fig. 1(d), the total field is determined by the incident field and the equivalent magnetic
current Ms over the slot. In the internal region, Fig. 1(c), the field is founded by equivalent electric —
Js over the wire and equivalent magnetic current — Ms. In both regions, the fields must satisfy the



Progress In Electromagnetics Research M, Vol. 39, 2014 95

boundary condition:
p �Ms = −�n × �Etotal (1)

The external equivalent problem:

⎧⎨
⎩

�Etotal = �E1 = �Escar( �Ms) + �Einc

�E2 = �0
p = +1

. The internal equivalent

problem:

⎧⎨
⎩

�Etotal = �E2 = �Escar(− �Ms) + �Escar(− �Js)
�E1 = �0
p = −1

.

Now, we force the boundary condition. So, the tangential electric field must vanish in the surface
of the wire and in the cavity walls:[

�Escar(− �Js) + �Escar(− �Ms)
]
tan

= 0 over D1 (2)[
�Escar(− �Js) + �Escar(− �Ms)

]
tan

= 0 over D3 (3)

The tangential component of the electric field is continuous across equivalent domain D2 (�n× �E1 =
�n × �E2). Therefore, we obtain the following equation:[

�Einc + �Escar( �Ms)
]
tan

=
[
�Escar(− �Js) + �Escar(− �Ms)

]
tan

over D2 (4)

where

�Escar( �Ms) = −1
ε
∇× �F (5)

�Escar( �Js) = − ∂

∂t
�A −∇ϕ (6)

A, ϕ and F are the electric vector potential, electric scalar potential and magnetic vector potential,
respectively and given by:

�A(x, y, t) =
μ

4π

∫∫
Dj

�Js(x′, y′, t − Rij/C)
Rij

ds′ (7)

ϕ(x, y, t) =
1

4πε

∫∫
Dj

qs(x′, y′, t − Rij/C)
Rij

ds′ (8)

�F (x, y, t) =
ε

4π

∫∫
Dj

�Ms(x′, y′, t − Rij/C)
Rij

ds′ (9)

In (7), (8) and (9), μ, ε and C are the permeability, permittivity and velocity of propagation of
electromagnetic wave, in free space. (x, y) and (x′, y′) are the observation and source points. t − Rij

C
represents the retarded time. Rij is the distance between the observation point (defined on the domain
Di) and the source point (defined on the domain Dj):

Rij =
√

(x − x′)2 + (y − y′)2

Based on Equations (2)–(6) and the expressions of scalar and vector potentials described above,
we can establish the following equations:⎡

⎣− μ

4π
∂

∂t

∫∫
D1

�Js(x′, y′, t−R11/C)
R11(x, y, x′, y′)

ds′− 1
4πε

∫∫
D1

∇ · ϕ(x′, y′, t−R11/C)
R11(x, y, x′, y′)

− 1
4π

∇×
∫∫
D2

⇀

M s(x′, y′, t−R12/C)
R12(x, y, x′, y′)

ds′

⎤
⎦=�0 (10)
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⎡
⎣− μ

4π
∂

∂t

∫∫
D1

�Js(x′, y′, t − R21/C)
R21(x, y, x′, y′)

ds′ − 1
4πε

∫∫
D1

∇ · ϕ(x′, y′, t − R21/C)
R21(x, y, x′, y′)

− 2
4π

∇×
∫∫
D2

⇀

M s(x′, y′, t − R22/C)
R22(x, y, x′, y′)

ds′

⎤
⎦ = Einc(x, y, t) (11)

⎡
⎣− μ

4π
∂

∂t

∫∫
D1

�Js(x′, y′, t − R31/C)
R31(x, y, x′, y′)

ds′ − 1
4πε

∫∫
D1

∇ · ϕ(x′, y′, t − R31/C)
R31(x, y, x′, y′)

− 1
4π

∇×
∫∫
D2

⇀

M s(x′, y′, t − R32/C)
R32(x, y, x′, y′)

ds′

⎤
⎦ = �0 (12)

The TD-EFIE are solved in space and time domains by applying the method of moments [16].

2.1. Spatial Expansion and Testing

Domain D1, which will be analyzed, is approximated by Piecewise Rectangular Function [17] associated
with Dirac function. The spatial basis function at the nth point is defined by �fn = �n · Λχj�u where

�k(h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h − hk−1

hk − hk−1
, h ∈ [hk−1, hk]

hk+1 − h

hk+1 − hk
, h ∈ [hk, hk+1]

0, otherwise

Λχj(χ) =
{

1, χ = χj

0, otherwise
(13)

Domain D2 is approximated by another vector basis function and is defined by: �gn(x, y) =
�n × �fn(x, y) = �n × (�n(y) · ΛxS

(x)�y) where �n is the unit normal pointing outward from the equivalent
surface D3. The unknown electric and magnetic currents �Js(x, y, t) and �Ms(x, y, t) on the wire and slot,
respectively, may be approximated in terms of two separate spatial basis functions as:

�Js(x, y, t) =
Nw∑
n=1

Jn(t)�fn(x, y) where �fn(x, y) = �n(y) · Λxw(x)�y (14)

�Ms(x, y, t) =
Ns∑
n=1

Mn(t)�gn(x, y) (15)

In the present work, the slot and wire are subdivided into Ns and Nw sub-domains using the
expansion functions (13) in y-direction. The length of each segment Δy is fixed. In x-direction, the
wire and slot are fixed at points Xs and Xw. The cavity walls are divided into Nc = Nc−x × Nc−y

sub-domains using testing function �hn which is defined by:

hk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fk(x1, y), y ∈ [yk, yk+1] , k ∈ {1 . . . Nc−y}
fk(xNc−x , y), y ∈ [yk, yk+1] , k ∈ {1 . . . Nc−y}
fk(x, y), y ∈ [y1, y2] , x = xk, k ∈ {1 . . . Nc−x}
fk(x, y), y ∈ [

yNc−y − 1, yNc−y

]
, x = xk, k ∈ {1 . . . Nc−x}

(16)

In order to avoid a time integral term in (10), (11) and (12) and to handle the time derivative of
the electric potential vector, we introduce the Hertz vector [11]:

�Js(x, y, t) =
d

dt
ζs(x, y, t) (17)
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The relation between the vector hertz and the electric scalar potential is given by:

ϕ(x, y, t) = −∇ · �ζs(x, y, t) (18)

We define another Hertz vector for the magnetic current as:

�Ms(x, y, t) =
d

dt
�ϑs(x, y, t) (19)

Based on (14) and (15), we may expand the two unknown sources �ζs and �ϑs as:

�ζs(x, y, t) =
Nw∑
n=1

ζn(t)�fn(x, y) (20)

�ϑs(x, y, t) =
Ns∑
n=1

ϑn(t)�gn(x, y) (21)

Using MoM, we develop a testing procedure associated to expansion procedure, already developed
above with (13), (20) and (21). By choosing the adequate testing functions and using the appropriate
scalar product, we obtain:[

Nw∑
n=1

[
−μa11

mn

d2ζn(t − R11
mn/C)

dt2
+

b11
mn

ε
ζn(t − R11

mn/C)
]

+
NS∑
n=1

−c21
mn

dυn(t − R21
mn/C)

dt

]
= 0 (22)

[
Nw∑
n=1

[
−μa12

mn

d2ζn(t − R12
mn/C)

dt2
+

b12
mn

ε
ζn(t − R12

mn/C)
]

+ 2
NS∑
n=1

−c22
mn

dυn(t − R22
mn/C)

dt

]
= Einc

m (t) (23)

[
Nw∑
n=1

[
−μa13

mn

d2ζn(t − R13
mn/C)

dt2
+

b13
mn

ε
ζn(t − R13

mn/C)
]

+
NS∑
n=1

−c23
mn

dυn(t − R23
mn/C)

dt

]
= 0 (24)

aij
mn, bij

mn, cij
mn and Einc

m (t) are developed in Appendix A.
We assume that the unknown transient quantities ζn and υn do not change appreciably within the

segment Δy, whose length is very small, so that τ ij = t − Rij(x,y,x′,y′)/C → τ ij
mn = t − Rij

mn/C.

2.2. Temporal Expansion and Testing

The time coefficients ζn(t) and υn(t) in (20) and (21) can be expanded using weighted Laguerre
Polynomial as temporal basis function. We define these coefficients as:

ζn(t) =
∞∑

a=0

ζn,aϕa(st) (25)

υn(t) =
∞∑

a=0

υn,aϕa(st) (26)

where
ϕa(st) = e−

st/2La(st) (27)

La(st) is the Laguerre Polynomial of order “a”. “s” is a scaling factor [14]. The various
mathematical properties of these functions are introduced in [10–15]. We assume that the time responses{
ζn(t), dζn(t)

dt

}
and

{
υn(t), dυn(t)

dt

}
at t = 0 have not started yet due to the casualty.

After the conventional temporal testing procedure with Galerkin’s method for the bth order of
Laguerre function and using the expression of expanding the first and second derivative of transient
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coefficients presented in [11], we obtain the following time domain equations derived from (22), (23)
and (24): ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nw∑
n=1

⎡
⎢⎢⎢⎢⎣

−s2μa11
mn

b∑
a=0

[
1
4
ζn,a +

a−1∑
k=0

(a − k)ζn,k

]
Iba

(
s
(
R11

mn/C
))

+
b11
mn

ε

b∑
a=0

ζn,aIba

(
s
(
R11

mn/C
))

⎤
⎥⎥⎥⎥⎦

+
NS∑
n=1

−sc21
mn

b∑
a=0

[
1
2
υn,a +

a−1∑
k=0

υn,k

]
Iba

(
s
(
R21

mn/C
))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (28)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nw∑
n=1

⎡
⎢⎢⎢⎢⎣

−s2μa12
mn

b∑
a=0

[
1
4
ζn,a +

a−1∑
k=0

(a − k)ζn,k

]
Iba

(
s
(
R12

mn/C
))

+
b12
mn

ε

b∑
a=0

ζn,aIba

(
s
(
R12

mn/C
))

⎤
⎥⎥⎥⎥⎦

+2
NS∑
n=1

−sc22
mn

b∑
a=0

[
1
2
υn,a +

a−1∑
k=0

υn,k

]
Iba

(
s
(
R22

mn/C
))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Einc
m,b (29)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nw∑
n=1

⎡
⎢⎢⎢⎢⎣

−s2μa13
mn

b∑
a=0

[
1
4
ζn,a +

a−1∑
k=0

(a − k)ζn,k

]
Iba

(
s
(
R13

mn/C
))

+
b13
mn

ε

b∑
a=0

ζn,aIba

(
s
(
R13

mn/C
))

⎤
⎥⎥⎥⎥⎦

+
NS∑
n=1

−sc23
mn

b∑
a=0

[
1
2
υn,a +

a−1∑
k=0

υn,k

]
Iba

(
s
(
R23

mn/C
))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (30)

where

Iba

(
s
Rij

mn

C

)
=

〈
ϕb(st), ϕa

(
s

(
t − Rij

mn

C

))〉
=

∞∫
0

ϕb(st)ϕa

(
s

(
t − Rij

mn

C

))
d(st)

=
{

e−
sRmn

2C

[
Lb−a(sRmn

C ) − Lb−a−1(sRmn
C )

]
, a ≤ b

0, a > b
(31)

and

Einc
b,m =

∞∫
0

ϕb(st)Einc
m (t)d(st) (32)

Based on the orthogonality condition of Laguerre functions, we can change the upper limit of the
sum (25) and (26) from ∞ to “b” as expressed in (28), (29) and (30). In the same equations, we move
the terms including the transient unknown coefficients which are known for a < b, to right-hand side.
So, we rewrite the resulting equations in a simple form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nw∑
n=1

A11
mn

ζn,b +
Ns∑
n=1

B21
mn

υn,b = T 1
m,b

(a)

Nw∑
n=1

A12
mn

ζn,b +
Ns∑
n=1

B22
mn

υn,b = Einc
m,b + T 2

m,b
(b)

Nw∑
n=1

A13
mn

ζn,b +
Ns∑
n=1

B23
mn

υn,b = T 3
m,b

(c)

(33)
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The space matrix Aij, Bij and the retarded terms T j
b are presented in Appendices A and B,

respectively.
Finally, we can write (33) in a matrix form as:⎡

⎢⎣
A11 B21

A12 B22

A13 B23

⎤
⎥⎦
[

ζb

υb

]
=

⎡
⎢⎣

T 1
b

−Einc
b + T 2

b

T 3
b

⎤
⎥⎦ (34)

Equation (34) is not a function of temporal testing function. Therefore, we can solve the matrix
equation as increasing the degree of temporal testing functions which leads to solving the problem only
in space for each degree of Laguerre function. Once the unknown coefficients ζn and υn are solved, the
transient electric and magnetic current densities can be obtained by:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Jn(t) =

d

dt
ζn(t) = s

A∑
a=0

[
1
2
ζn,a +

a−1∑
k=0

ζn,k

]
ϕa(st)

�Js(x, y, t) =
Nw∑
n=1

Jn(t)�fn(x, y)

(35)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mn(t) =
d

dt
υn(t) = s

A∑
a=0

[
1
2
υn,a +

a−1∑
k=0

υn,k

]
ϕa(st)

�Ms(x, y, t) =
NS∑
n=1

Mn(t)�gn(x, y)

(36)

A is the maximum order of Laguerre functions [12].

3. NUMERICAL RESULTS

In this section, we give a quantitative discussion concerning the transient response of the cavity
containing an interior scatterer. In the following, we present different numerical results for various
parameters: slot length, slot offset, separate distance and wire length.

a 

X  

 

D 

e 

b 

P 

Y  

l w l S

Figure 2. The geometrical parameters of the problem are: a = 2 ∗ bmm, b = 109.3 mm, D = 43.7 mm,
P = 32.8 mm, lw = ls = 39.5 mm and e = ew = 10−5 mm (ew is the thickness of wire).

Figure 2 shows the structure of the problem. The cavity is excited through the slot by rectangular
pulse [10] which is defined by:

Einc(x, y, t) =
{

1, 10−9s ≤ t ≤ 10−8s

0, others
(37)

We subdivide the cavity walls into Nc−x × Nc−y = 200 × 200 segments of length Δx × Δy =
a

Nc−x
× b

Nc−y
. Thus, the wire and slot are divided into Nw ≈ lw

Δy
and Ns ≈ ls

Δy
sub-domains, respectively.
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3.1. Shielding of the Cavity

In order to carry through our propose formulation, we start by studying the transient electromagnetic
scattering from thin wire excited by EM wave (37) in free space. Fig. 3(a) shows the transient current
induced at the center of the wire scatterer as function of time, and Fig. 3(b) shows the spatial distribution
of the current at t = 1.3∗10−9s which applies same formulation, described in [10].

Figures 3(c) and (d) depict the transient response of the same wire enclosing in the cavity as shown
in Fig. 2. The wire is excited by the same source through the aperture. The two transient responses
are different due to the cavity’s shielding. The space distribution of the current at the wire is close to
that presented in [1].
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Figure 3. Transient response of the wire: (a) Space distribution of electric current density in free
space; (b) Electric current density at the center of the wire in free space at t = 1.3 ∗ 10−9 s; (c) Space
distribution of electric current density of the wire enclosing within rectangular cavity; (d) Electric
current density at the center of the wire enclosing within rectangular cavity at t = 1.3 ∗ 10−9 s.

We also note that the amplitude of the current density in free space has a peak at approximately
3.3 mA that decreases to the order of 1.5 µA inside the cavity. Thus the shielding of the cavity
significantly reduces the currents.

3.2. Slot Length

The transient responses of the wire and slot for various sizes of slot are revealed. The separate distance
D, the cavity size, the wire length lw and the distance P are fixed, as shown in Fig. 4. So there are
three varied slot lengths.

The transient electric current at the center of the wire and the transient magnetic current at the
center of the slot become more important when the length of the slot is increased, as depicted in Fig. 5
and Fig. 6(a).
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Figure 4. Various slot lengths: (a) ls1 = 0.25 ∗ ls; (b) ls2 = 0.5 ∗ ls; (c) ls3 = ls.
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Figure 5. The normalized magnetic current density at the center of the slot for various slot lengths.
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Figure 6. Transient response of the wire for various slot lengths: (a) The normalized electric
current density at the center of the wire; (b) The normalized space current distribution of the wire
at t = 1.3 ∗ 10−9 s.

As physically expected, the length of the slot has an impact on space distribution of current on the
wire, as presented in Fig. 6(b). Hence, the blue curve shows that the magnitude of the electric current
vanishes in the absence of the slot.

3.3. Slot Offset

The position of slot P , referred to as the slot offset, is of variable interest. Thus, when we change
position P , the magnitude of current varies significantly. Transient electric current density at the center
of the wire for various slot positions: P1, P2 and P3 is shown in Fig. 7(a) (the wire and slot have the
same length). The position of the wire and separate distance D are fixed. In fact, the magnitude of
current density is increased when the slot is located at the center of the cavity wall, position P2. But,
when the slot is located at the bottom or the top of cavity wall, positions P1 and P3, respectively, the
currents densities have the same variation.
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Figure 7. Transient response of the wire for various slot positions: (P1 = 10.9 mm, the corresponding
slot offset = (218.5 mm, 30.7 mm)), (P2 = 328 mm, the corresponding slot offset = (218.5 mm, 525 mm))
and (P3 = 54.6 mm, the corresponding slot offset = (218.5 mm, 744 mm)): (a) The normalized transient
current at the center of the wire; (b) The normalized space distribution of the current density at
t = 1.3 ∗ 10−9 s.
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Figure 8. The normalized magnetic current at the center of the slot for various separate distances D.
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Figure 9. Transient response of the wire for various separate distances D: (a) The normalized electric
current density at the center of the wire; (b) The normalized electric current density at the center of
the wire for higher distances.

Indeed, the space distributions of the current on the wire, for the three positions, are different,
as shown in Fig. 7(b). We notice that when the slot is located on the bottom of the cavity wall, the
magnitude of current density is maximal at the bottom of the wire and vanishes at the top. So, when
the slot is located at the top of the cavity wall, the magnitude of current density is maximal at the top
of wire and vanishes at the bottom.
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3.4. Wire Location

In order to study the coupling between wireslot and to demonstrate the influence of the separate distance
D to the behaviours of electric and magnetic currents, we consider five distances D: D1 = 0.01 × a,
D2 = 0.1 × a, D3 = 0.5 × a, D4 = 0.7 × a and D5 = 0.9 × a.

Figures 8 and 9 show the transient responses of the slot and wire for different locations of the wire.
It is physically evident that when the wire is moved further from the slot, the magnitude of electric and
magnetic current densities become lower. Fig. 9(b) demonstrates that even if the wire is estranged from
the slot, there is lower variation of electric current density at the center of the wire. This variation can
be explained mathematically by the coupling matrix A12 and B21 in (33). ||A12|| and ||B21|| increase
when the separate distance D is lower (see Equations (A3), (A4) and (A5) in Appendix A).
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Figure 10. Space distribution of electric current density at t = 1.3 ∗ 10−9 s for various wire lengths.
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Figure 11. Transient response of the wire and slot wire for various wire lengths: (a) Normalized electric
current at the center of the wire; (b) Normalized magnetic current at the center of the slot.
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3.5. Wire Length

In order to demonstrate the influence of the wire length on the behaviour of the transient electric and
magnetic current, we consider four lengths: lw1 = lw/4, lw2 = lw/2, lw3 = lw and lw4 = 2 ∗ lw. The
length of the slot, separate distance D, position of the wire, position of the slot and cavity size are fixed
as presented in Fig. 2 (we note that the wire and slot have the same position P ).

As depicted in Fig. 10, the space distribution on the wire varies when the length of wire changes.
The relation between the wire length and the transient response of the wire and slot is revealed in

Fig. 11. The magnitude of electric and magnetic current densities becomes higher as the length of the
wire grows.

4. CONCLUSION

In this paper, we have applied the equivalence principle combined to boundary conditions to develop
a novel 2-D numerical time domain integral equations for studding the transient behavior of thin wire
enclosing within rectangular cavity and excited by transient EM wave through the slot.

TD-EFIE is successfully solved by application of the MoM in space and time domain. Accurate
spatial basis and testing functions are used. We introduce a temporal basis and testing functions set
derived from Laguerre polynomials.

Stable and accurate results have mainly been found with electric and magnetic currents responses.
This formulation can be extended to 3-D and is easily applicable to study various cavity related

problems.

APPENDIX A.

The space matrix Aij
mn

and Bij
mn

can be defined by:

Aij
mn =

(
−s2 μaij

mn

4
+

bij
mn

ε

)
Ibb

(
s
(

Rij
mn/C

))
(A1)

Bij
mn = −scij

mn

2
Ibb

(
s
(

Rij
mn/C

))
(A2)

where

In (22) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1
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∫∫
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(A3)

In (23) :
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In (24) :
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(
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(A6)

The projection of the source is given by:

�Einc(t) =
〈
�g(x, y), �n × �Einc(x, y, t)

〉
=
∫∫
D2

�g(x, y) ·
[
�n × �Einc(x, y, t)

]
ds (A7)

APPENDIX B.

The retarded terms take the following forms:
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