Vol. 148
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-07-21
Differential Forms and Electromagnetic Field Theory (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 148, 83-112, 2014
Abstract
Mathematical frameworks for representing fields and waves and expressing Maxwell's equations of electromagnetism include vector calculus, differential forms, dyadics, bivectors, tensors, quaternions, and Clifford algebras. Vector notation is by far the most widely used, particularly in applications. Of the more sophisticated notations, differential forms stand out as being close enough to vectors that most practitioners can readily understand the notation, yet at the same time offering unique visualization tools and graphical insight into the behavior of fields and waves. We survey recent papers and book on differential forms and review the basic concepts, notation, graphical representations, and key applications of the differential forms notation to Maxwell's equations and electromagnetic field theory.
Citation
Karl Warnick, and Peter H. Russer, "Differential Forms and Electromagnetic Field Theory (Invited Paper)," Progress In Electromagnetics Research, Vol. 148, 83-112, 2014.
doi:10.2528/PIER14063009
References

1. Maxwell, J. C., A Treatise on Electricity and Magnetism, Vol. 1, Oxford University Press, New York, 1998.

2. Maxwell, J. C., A Treatise on Electricity and Magnetism, Vol. 2, Oxford University Press, New York, 1998.

3. Grifths, H., "Oliver heaviside," History of Wireless, 1st Edition, 229-246, T. K. Sarkar, R. Mailloux, and A. A. Oliner, Eds., Wiley & Sons, Hoboken, New Jersey, 2006.

4. Grassmann, H. and L. Kannenberg, A New Branch of Mathematics: The ``Ausdehnungslehre" of 1844 and Other Works, Open Court Publishing, Chicago, 1995.

5. Cartan, E., Les Systemes Differentielles Exterieurs, Hermann, Paris, 1945.

6. Miller, A. I., Imagery in Scientic Thought, Birkhauser, Boston, 1984.

7. Flanders, H., Differential Forms with Applications to the Physical Sciences, Dover, New York, 1963.

8. Misner, C., K. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisc, 1973.

9. Thirring, W., Classical Field Theory, Vol. 2, 2nd Edition, Springer-Verlag, New York, 1978.

10. Deschamps, G. A., "Electromagnetics and differential forms," IEEE Proc., Vol. 69, 676-696, June 1981.
doi:10.1109/PROC.1981.12048

11. Burke, W. L., Applied Differential Geometry, Cambridge University Press, Cambridge, 1985.
doi:10.1017/CBO9781139171786

12. Weck, N., "Maxwell's boundary value problem on Riemannian manifolds with nonsmooth boundaries," J. Math. Anal. Appl., Vol. 46, 410-437, 1974.
doi:10.1016/0022-247X(74)90250-9

12. Sasaki, I. and T. Kasai, "Algebraic-topological interpretations for basic equations of electromagnetic fields," Bull. Univ. Osaka Prefecture A, Vol. 25, No. 1-2, 49-57, 1976.

14. Schleifer, N., "Differential forms as a basis for vector analysis --- With applications to electrodynamics," Am. J. Phys., Vol. 51, 1139-1145, December 1983.
doi:10.1119/1.13325

15. Burke, W. L., "Manifestly parity invariant electromagnetic theory and twisted tensors ," J. Math. Phys., Vol. 24, 65-69, January 1983.
doi:10.1063/1.525603

16. Engl, W. L., "Topology and geometry of the electromagnetic field," Radio Sci., Vol. 19, 1131-1138, September-October 1984.

17. Baldomir, D., "Differential forms and electromagnetism in 3-dimensional Euclidean space R3," IEE Proc., Vol. 133, 139-143, May 1986.

18. Karloukovski, V. I., "On the formulation of electrodynamics in terms of differential forms," Annuaire de l'Universitede SoaFacultede Physique, Vol. 79, 3-12, 1986.

19. Baldomir, D. and P. Hammond, "Global geometry of electromagnetic systems," IEE Proc., Vol. 140, 142-150, March 1992.

20. Ingarden, R. S. and A. Jamiokowksi, Classical Electrodynamics, Elsevier, Amsterdam, The Netherlands, 1985.

21. Bamberg, P. and S. Sternberg, A Course in Mathematics for Students of Physics, Vol. 2, Cambridge University Press, Cambridge, 1988.
doi:10.1017/CBO9781139171670

22. Parrott, S., Relativistic Electrodynamics and Differential Geometry, Springer-Verlag, New York, 1987.
doi:10.1007/978-1-4612-4684-8

23. Frankel, T., The Geometry of Physics, Cambridge University Press, Cambridge, 1997.

24. Weintraub, S., Differential Forms --- A Complement to Vector Calculus, Academic Press, New York, 1997.

25. Russer, P., Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering, Artech House, Boston, 2003.

26. Russer, P., Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering , 2nd edition, Artech House, Boston, 2006.

27. Warnick, K. F. and P. Russer, Problem Solving in Electromagnetics, Microwave Circuit, and Antenna Design for Communications Engineering, Artech House, Norwood, MA, 2006.

28. Hehl, F. W. and Y. N. Obukov, Foundations of Classical Electrodynamics, Birkhauser, Boston, Basel, Berlin, 2003.
doi:10.1007/978-1-4612-0051-2

29. Lindell, I. V., Differential Forms in Electromagnetics, IEEE Press, New York, 2004.
doi:10.1002/0471723096

30. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Electromagnetic boundary conditions using differential forms," IEE Proc., Vol. 142, No. 4, 326-332, 1995.

31. Warnick, K. F. and P. Russer, "Two, three, and four-dimensional electromagnetics using differential forms," Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 14, No. 1, 153-172, 2006.

32. Warnick, K. F. and P. Russer, "Green's theorem in electromagnetic field theory," Proceedings of the European Microwave Association, Vol. 12, 141-146, June 2006.

33. Warnick, K. F. and D. V. Arnold, "Electromagnetic Green functions using differential forms," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 3, 427-438, 1996.
doi:10.1163/156939396X00504

34. Warnick, K. F. and D. V. Arnold, "Green forms for anisotropic, inhomogeneous media," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 8, 1145-1164, 1997.
doi:10.1163/156939397X01061

35. Nguyen, D. B., "Relativistic constitutive relations, differential forms, and the p-compound," Am. J. Phys., Vol. 60, 1137-1147, December 1992.
doi:10.1119/1.16962

36. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Teaching electromagnetic field theory using differential forms," IEEE Trans. Educ., Vol. 40, No. 1, 53-68, 1997.
doi:10.1109/13.554670

37. Mingzhong, R., T. Banding, and H. Jian, "Differential forms with applications to description and analysis of electromagnetic problems," Proc. CSEE, Vol. 14, 56-62, September 1994.

38. Picard, R., "Eigensolution expansions for generalized Maxwell fields on C0;1-manifolds with boundary," Applic. Anal., Vol. 21, 261-296, 1986.
doi:10.1080/00036818608839597

39. Bossavit, A., "Differential forms and the computation of fields and forces in electromagnetism," Eur. J. Mech. B, Vol. 10, No. 5, 474-488, 1991.

40. Hammond, P. and D. Baldomir, "Dual energy methods in electromagnetics using tubes and slices," IEE Proc., Vol. 135, 167-172, March 1988.

41. Hiptmair, R., "Multigrid method for Maxwell's equations," SIAM Journal on Numerical Analysis, Vol. 36, No. 1, 204-225, 1998.
doi:10.1137/S0036142997326203

42. Castillo, P., R. Rieben, and D. White, "FEMSTER: An object-oriented class library of high-order discrete differential forms," ACM Transactions on Mathematical Software (TOMS), Vol. 31, No. 4, 425-457, 2005.
doi:10.1145/1114268.1114269

43. Desbrun, M., E. Kanso, and Y. Tong, "Discrete differential forms for computational modeling," Discrete Di®erential Geometry, 287-324, Springer, 2008.
doi:10.1007/978-3-7643-8621-4_16

44. Buffa, A., J. Rivas, G. Sangalli, and R. Vazquez, "Isogeometric discrete differential forms in three dimensions," SIAM Journal on Numerical Analysis, Vol. 49, No. 2, 818-844, 2011.
doi:10.1137/100786708

45. Teixeira, F. and W. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 665-686, 1999.
doi:10.1163/156939399X01104

46. Trautman, A., "Deformations of the hodge map and optical geometry," JGP, Vol. 1, No. 2, 85-95, 1984.

47. Warnick, K. F., A differential forms approach to electromagnetics in anisotropic media, Ph.D. Thesis, Brigham Young University, Provo, UT, 1997.

48. Teixeira, F. L., H. Odabasi, and K. F. Warnick, "Anisotropic metamaterial blueprints for cladding control of waveguide modes," JOSAB, Vol. 27, No. 8, 1603-1609, 2010.
doi:10.1364/JOSAB.27.001603

49. Caro, P. and T. Zhou, "On global uniqueness for an IBVP for the time-harmonic Maxwell equations," Mathematical Physics, 1210.7602, 2012.

50. Russer, P., M. Mongiardo, and L. B. Felsen, "Electromagnetic field representations and computations in complex structures III: Network representations of the connection and subdomain circuits," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 15, No. 1, 127-145, 2002.
doi:10.1002/jnm.435

51. Deschamps, G., "Electromagnetics and differential forms," Proceedings of the IEEE, 676-696, June 1981.
doi:10.1109/PROC.1981.12048

52. Tellegen, B., "A general network theorem with applications," Philips Research Reports, Vol. 7, 259-269, 1952.

53. Peneld, P., R. Spence, and S. Duinker, Tellegen's Theorem and Electrical Networks, MIT Press, Cambridge, Massachusetts, 1970.

54. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

55. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

56. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, 1986.

57. Elliott Electromagnetics --- History, Theory, and Applications, IEEE Press, New York, 1991.

58. Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1991.

59. De Rham, G., Differentiable Manifolds, Springer, New York, 1984.
doi:10.1007/978-3-642-61752-2