Vol. 149
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-08-23
Wiener-Hopf Analysis of the h -Polarized Plane Wave Diffraction by a Finite Sinusoidal Grating (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 149, 1-13, 2014
Abstract
The diffraction by a finite sinusoidal grating is analyzed for the H-polarized plane wave incidence using the Wiener-Hopf technique combined with the perturbation method. Assuming the depth of the grating to be small compared with the wavelength and approximating the boundary condition on the grating surface, the problem is reduced to the diffraction problem involving a flat strip with a certain mixed boundary condition. Introducing the Fourier transform for the unknown scattered field and applying an approximate boundary condition together with a perturbation series expansion for the scattered field, the problem is formulated in terms of the zero-order and first-order Wiener-Hopf equations. The Wiener-Hopf equations are solved via the factorization and decomposition procedure leading to the exact and asymptotic solutions. Taking the inverse Fourier transform and applying the saddle point method, the scattered field expression is explicitly derived. Scattering characteristics of the grating are discussed in detail via numerical examples of the far field intensity.
Citation
Toru Eizawa, and Kazuya Kobayashi, "Wiener-Hopf Analysis of the h -Polarized Plane Wave Diffraction by a Finite Sinusoidal Grating (Invited Paper)," Progress In Electromagnetics Research, Vol. 149, 1-13, 2014.
doi:10.2528/PIER14063007
References

1. Shestopalov, V. P., The Riemann-Hilbert Method in the Theory of Diffraction and Propagation of Electromagnetic Waves, Kharkov University Press, Kharkov, 1971 (in Russian).

2. Nosich, A. I., "Green’s function-dual series approach in wave scattering by combined resonant scatterers," Analytical and Numerical Methods in Electromagnetic Wave Theory, Chapter 9, M. Hashimoto, M. Idemen, and O. A. Tretyakov, Eds., Science House, Tokyo, 1993.

3. Shestopalov, V. P., L. N. Litvinenko, S. A. Masalov, and V. G. Sologub, Diffraction of Waves by Gratings, Kharkov University Press, Kharkov, 1973 (in Russian).

4. Shestopalov, V. P., A. A. Kirilenko, and S. A. Masalov, Convolution-type Matrix Equations in the Theory of Diffraction, Naukova Dumka Publishing, Kiev, 1984 (in Russian).

5. Nosich, A. I., "The method of analytical regularization in wave-scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas Propagat. Mag., Vol. 41, No. 3, 34-49, 1999.
doi:10.1109/74.775246

6. Ikuno, H. and K. Yasuura, "Improved point-matching method with application to scattering from a periodic surface," IEEE Trans. Antennas Propagat., Vol. 21, No. 5, 657-662, 1973.
doi:10.1109/TAP.1973.1140592

7. Okuno, Y., "The mode-matching method," Analysis Methods for Electromagnetic Wave Problems, E. Yamashita (ed.), Chapter 4, Artech House, Boston, 1990.

8. Okuno, Y., "An introduction to the Yasuura method," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Chapter 11, Science House, Tokyo, 1993.

9. Petit, R. (ed.), Electromagnetic Theory of Gratings, Springer-Verlag, Berlin, 1980.
doi:10.1007/978-3-642-81500-3

10. Hinata, T. and T. Hosono, "On the scattering of electromagnetic wave by plane grating placed in homogeneous medium — Mathematical foundation of point-matching method and numerical analysis," Trans. IECE Japan, Vol. J59-B, No. 12, 571-578, 1976 (in Japanese).

11. Yamasaki, T., K. Isono, and T. Hinata, "Analysis of electromagnetic fields in inhomogeneous media by Fourier series expansion methods — The case of a dielectric constant mixed a positive and negative regions," IEICE Trans. Electron., Vol. E88-C, No. 12, 2216-2222, 2005.
doi:10.1093/ietele/e88-c.12.2216

12. Ozaki, R., T. Yamasaki, and T. Hinata, "Scattering of electromagnetic waves by multilayered inhomogeneous columnar dielectric gratings," IEICE Trans. Electron., Vol. E90-C, No. 2, 295-303, 2007.
doi:10.1093/ietele/e90-c.2.295

13. Noble, B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, Pergamon, London, 1958.

14. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, The Golem Press, Boulder, 1969.

15. Mittra, R. and S.-W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, New York, 1971.

16. Kobayashi, K., "Wiener-Hopf and modified residue calculus techniques," Analysis Methods for Electromagnetic Wave Problems, Chapter 8, E. Yamashita, Ed., Artech House, Boston, 1990.

17. Baldwin, G. L. and A. E. Heins, "On the diffraction of a plane wave by an infinite plane grating," Math. Scand., Vol. 2, 103-118, 1954.

18. Hills, N. L. and S. N. Karp, "Semi-infinite diffraction gratings --- I," Comm. Pure Appl. Math., Vol. 18, No. 1-2, 203-233, 1965.
doi:10.1002/cpa.3160180119

19. Luneburg, E. and K. Westpfahl, "Diffraction of plane waves by an infinite strip grating," Ann. Phys., Vol. 27, No. 3, 257-288, 1971.
doi:10.1002/andp.19714820305

20. Luneburg, E., "Diffraction by an infinite set of parallel half-planes and by an infinite strip grating," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Chapter 7, Science House, Tokyo, 1993.

21. Serbest, A. H., A. Kara, and E. Luneburg, "Scattering of plane waves at the junction of two corrugated half-planes," Electromagnetics, Vol. 25, No. 1, 21-38, 2005.
doi:10.1080/02726340590522111

22. Idemen, M. and A. Alkumru, "Diffraction of two-dimensional high-frequency electromagnetic waves by a locally perturbed two-part impedance plane," Wave Motion, Vol. 42, 53-73, 2005.
doi:10.1016/j.wavemoti.2004.09.003

23. Ayub, M., M. Ramzan, and A. B. Mann, "Acoustic diffraction by an oscillating strip," Applied Mathematics and Computation, Vol. 214, 201-209, 2009.
doi:10.1016/j.amc.2009.03.089

24. Kobayashi, K., "Diffraction of a plane wave by the parallel plate grating with dielectric loading," Trans. IECE Japan, Vol. J64-B, No. 10, 1091-1098, 1981 (in Japanese).

25. Kobayashi, K., "Diffraction of a plane electromagnetic wave by a parallel plate grating with dielectric loading: The case of transverse magnetic incidence," Can. J. Phys., Vol. 63, No. 4, 453-465, 1985.
doi:10.1139/p85-071

26. Kobayashi, K. and T. Inoue, "Diffraction of a plane wave by an inclined parallel plate grating," IEEE Trans. Antennas Propagat., Vol. 36, No. 10, 1424-1434, 1988.
doi:10.1109/8.8630

27. Kobayashi, K. and K. Miura, "Diffraction of a plane wave by a thick strip grating," IEEE Trans. Antennas Propagat., Vol. 37, No. 4, 459-470, 1989.
doi:10.1109/8.24166

28. Das Gupta, S. P., "Diffraction by a corrugated half-plane," Proc. Vib. Prob., Vol. 3, No. 11, 413-424, 1970.

29. Chakrabarti, A. and S. Dowerah, "Traveling waves in a parallel plate waveguide with periodic wall perturbations," Can. J. Phys., Vol. 62, No. 3, 271-284, 1984.

30. Zheng, J. P. and K. Kobayashi, "Diffraction by a semi-infinite parallel-plate waveguide with sinusoidal wall corrugation: Combined perturbation and Wiener-Hopf analysis," Progress In Electromagnetics Research B, Vol. 13, 75-110, 2009.
doi:10.2528/PIERB08120704

31. Zheng, J. P. and K. Kobayashi, "Combined Wiener-Hopf and perturbation analysis of the H-polarized plane wave diffraction by a semi-infinite parallel-plate waveguide with sinusoidal wall corrugation," Progress In Electromagnetics Research B, Vol. 13, 203-236, 2009.
doi:10.2528/PIERB09021102

32. Kobayashi, K. and T. Eizawa, "Plane wave diffraction by a finite sinusoidal grating," Trans. IECE Japan, Vol. E74, No. 9, 2815-2826, 1991.

33. Kobayashi, K., "Some diffraction problems involving modified Wiener-Hopf geometries," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Chapter 4, Science House, Tokyo, 1993.

34. Kobayashi, K., "Solutions of wave scattering problems for a class of the modified Wiener-Hopf geometries," IEEJ Transactions on Fundamentals and Materials, Vol. 133, No. 5, 233-241, 2013.
doi:10.1541/ieejfms.133.233

35. Kobayashi, K., "Plane wave diffraction by a strip: Exact and asymptotic solutions," J. Phys. Soc. Japan, Vol. 60, No. 6, 1891-1905, 1991.
doi:10.1143/JPSJ.60.1891

36. Kobayashi, K., "On generalized gamma functions occurring in diffraction theory," J. Phys. Soc. Japan, Vol. 60, 1501-1512, 1991.
doi:10.1143/JPSJ.60.1501