Vol. 38
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-08
Application of Underwater Low Frequency Electromagnetic Fields Detection with Tss FDTD Method
By
Progress In Electromagnetics Research M, Vol. 38, 143-154, 2014
Abstract
Based on the conventional finite-difference time-domain (FDTD) method, a novel dual-meshed technique is presented to deal with the underwater detection problems applying in low frequency electromagnetic wave. A transformation surface connecting the coarse cell with the fine cell is implemented by applying a total-field scattered-field source (TSS) technique, which is carried out by two-step FDTD simulation. The ratio of a coarse cell size to a fine cell size can be set as an arbitrary integer, such as N=10. Moreover, it is illustrates that non-physical reflection fields from the TSS surface are avoided by introducing the TSS surface. We have derived, in detail, the update equations of fields on grids of the TSS surface. Three cases of dealing with different underwater electromagnetic problems are discussed. Numerical results show that by analyzing the magnitude and phase of scattered fields from obstacles underwater we can distinguish the category of the obstacles which belongs to either a high resistivity body or a low resistivity body. Therefore, the proposed method provides us an effective tool for analyzing the electromagnetic response of materials underwater.
Citation
Kuisong Zheng, Hui Yu, Huan Luo, and Tengjiang Ding, "Application of Underwater Low Frequency Electromagnetic Fields Detection with Tss FDTD Method," Progress In Electromagnetics Research M, Vol. 38, 143-154, 2014.
doi:10.2528/PIERM14061102
References

1. Allen, T., Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd Edition, Boston, 2000.

2. Yee, K., "Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media," IEEE Transactions Antennas and Propagation, Vol. 14, 6-10, 1966.
doi:10.1109/TAP.1966.1138620

3. Xia, Y. and D. M. Sullivan, "Underwater FDTD simulation at extremely low frequencies," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 661-664, 2008.
doi:10.1109/LAWP.2008.2010066

4. Furse, C. M., "Faster than Fourier: Ultra-efficient time-to-frequency-domain conversions for FDTD simulations," IEEE Antennas and Propagation Magazine, Vol. 42, 24-34, 2000.
doi:10.1109/74.894179

5. Loach, P. D., J. J. Kazik, and R. C. Ireland, "Numerical modelling of underwater electromagnetic propagation," Recent Advances in Applied and Theoretical Mathematics, 220-225, 2000.

6. Chen, J. and A. Zhang, "A subgridding scheme based on the FDTD method and HIE-FDTD method," Applied Computational Electromagnetics Society Journal, Vol. 26, No. 1, 1-7, 2011.

7. Yu, W. and R. Mittra, "New subgridding method for the finite-difference time-domain (FDTD) algorithm," Microwave and Optical Technology Letters, Vol. 21, No. 5, 330-333, 1999.
doi:10.1002/(SICI)1098-2760(19990605)21:5<330::AID-MOP7>3.0.CO;2-N

8. Mock, A., "Subgridding scheme for FDTD in cylindrical coordinates," PIERS Proceedings, 1053-1057, Suzhou, China, Sep. 12-16, 2011.

9. Berenger, J. P., "A Huygens subgridding for the FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3797-3804, 2006.
doi:10.1109/TAP.2006.886519

10. Berenger, J. P., "Extension of the FDTD huygens subgridding algorithm to two dimensions," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3860-3867, 2009.
doi:10.1109/TAP.2009.2031906

11. Berenger, J. P., "The Huygens subgridding for the numerical solution of the Maxwell equations," Journal of Computational Physics, Vol. 230, No. 14, 5635-5659, 2011.
doi:10.1016/j.jcp.2011.03.046

12. Abalenkovs, M., "Huygens subgridding for 3-D frequency-dependent finite-difference time-domain method," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4336-434, 2012.
doi:10.1109/TAP.2012.2207039

13. Xia, Y. and D. M. Sullivan, "Dual problem space FDTD simulation for underwater ELF applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 498-501, 2009.

14. Sullivan, D. M. and Y. Xia, "A perfectly matched layer for lossy media at extremely low frequencies," 2009 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Institute of Electrical and Electronics Engineers Inc., North Charleston, SC, United States, Jun. 1-5, 2009.

15. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

16. Harrington, R. F., Time-harmonic Electromagnetic Fields, 106-108, 228–230, 2001.
doi:10.1109/9780470546710