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Application of Underwater Low Frequency Electromagnetic Fields
Detection with TSS FDTD Method

Kuisong Zheng*, Hui Yu, Huan Luo, and Tengjiang Ding

Abstract—Based on the conventional finite-difference time-domain (FDTD) method, a novel total-
field scattered-field source FDTD method with a dual-meshed technique is presented to deal with
the underwater detection problems in low frequency electromagnetic wave. A transformation surface
connecting the coarse cell with the fine cell is implemented by applying a total-field scattered-field source
(TSS) technique, which is carried out by two-step FDTD simulation. The ratio of a coarse cell size to
a fine cell size can be set as an arbitrary integer, such as N = 10. Moreover, an analysis of numerical
error illustrates that non-physical reflection fields from the TSS surface are avoided by introducing the
TSS surface. We have derived, in detail, the update equations of fields on grids of the TSS surface.
Three cases of dealing with different underwater electromagnetic problems are discussed. Numerical
results show that by analyzing the magnitude and phase of scattered fields from obstacles underwater
we can distinguish the category of the obstacles which belong to either a high resistivity body or a
low resistivity body. Therefore, the proposed method provides us an effective tool for analyzing the
electromagnetic response of materials underwater.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method [1, 2] is arguably the simplest, both conceptually
and in terms of implementation, of the full-wave techniques used to solve problems in electromagnetics.
Recently, this method has turned out to be effective at extremely low frequency [3, 4]. The development
of a reliable and accurate algorithm for underwater electromagnetic application has been a challenging
problem for many years [3–5].

In underwater environment, the electromagnetic wave in the extremely low frequency range can
propagate over long distance. The characteristics of underwater electromagnetic wave propagation
imply that the computation domain needs to be meshed with a large cell size. However, in order
to model the excited source more precisely, we need a fine cell size to mesh the space containing the
excited source. For example, a loop antenna operating in low frequency is used to excite electromagnetic
waves propagating in underwater. To overcome the contradiction, several subbgridding techniques have
been reported in the literature [6–8]. However, the conventional subbgridding techniques have several
disadvantages. The ratio of a coarse to fine cell size is usually less than or equal to 3, which is always
not large enough to meet the requirement of underwater electromagnetic problem. Simultaneously, the
exchange interface between the coarse cell and fine cell will lead to inevitable non-physical reflection.

In this paper, a novel dual-meshed technique is proposed. The basic idea of the method involves a
two-step simulation procedure. These two simulations are connected by the establishment of a total-field
scattered-field source (TSS) surface. In the first simulation, a fine cell size is employed. The radiated
fields of an excited source on the TSS surface are stored for record. In the second simulation, the
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equivalent currents are calculated with the recorded radiated fields, and then introduced into the range
of total fields by the TSS surface. This method allows applying a large ratio of a coarse cell size to a
fine cell size, such as the ratio N = 10. Furthermore, the introduced TSS surface does not affect the
propagating of scattered fields from the obstacles. For stating conveniently, the proposed method is
referred to as TSS FDTD method.

In the works [9–12], Huygens subgridding (HSG) method is presented to divide the entire problem
space into several parts with different time and space increments. For the HSG, two spaces are connected
by two Huygens surfaces called inner surface (IS) and outer surface (OS). The IS and OS are set close
to each other, typically separated with 2 or 3 FDTD cells. For the proposed TSS FDTD method, the
connected surface is established by only one FDTD cell of electric-field node or magnetic-field node.
Moreover, for the proposed method, the ratio of a coarse cell size to a fine cell size can be set as an
arbitrarily odd or even integer.

Certainly, the idea of dual simulation space to analyze the electromagnetic fields of extremely
low frequency is first given in [13]. However, this reference does not state clearly how to obtain the
accurate equivalent electromagnetic currents on the transformation surface. Moreover, in this reference,
the authors only apply in either equivalent electric currents or equivalent magnetic currents to finish
field transformation between these two simulation spaces. The above process will produce certain
numerical errors. As we know, it is very important to carefully deal with the connection surface for
the computation of dual simulation space. According to the reference, we extend the idea of the dual
simulation space to present the TSS FDTD method. Using the TSS technique, we derive the iteration
formulas of electromagnetic currents on the connection surface in detail.

The remainder of this paper is organized as follows. Section 2 introduce the two-dimensional TSS
FDTD method. Section 3 illustrates the accuracy of the TSS FDTD method. Section 4 describes a
complex case underwater to detect the obstacles with low frequency electromagnetic wave. Finally,
concluding remarks are drawn in Section 5.

2. TSS FDTD METHOD

Ampere’s and Faraday’s laws are the relevant governing equations in constructing the FDTD algorithm.
These equations are approximated by finite-differences at the appropriate points in space-time, yielding
the discretized update equations. According to the Yee algorithm. For example, the update equation
of Ez component in a two-dimensional case is
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The coefficients CA(m) and CB(m) in the update equation are assumed constant in time but may
be functions of position. The detailed formulas of CA(m) and CB(m) can be referred to [1]. The
equivalent source can be described as: the fields produced by an excited source located inside this part
can be reproduced by impressing the following equivalent electric and magnetic current densities on the
equivalent surface. These currents are therefore

�Js = �n × �Hs
�Jms = �Es × �n (2)

where �n is the unit vector normal to the TSS surface. �Es and �Hs are original tangential fields over the
TSS surface.

As shown in Fig. 1, the TSS surface includes E-surface and H-surface. These two surfaces are
adjacent to together. Usually, in FDTD we define the E-surface containing electric field nodes and
H-surface containing magnetic field nodes. In TSS FDTD, the equivalent source is introduced into the
update equations by the two-step simulation procedure. One step is to record the tangential electric
field and magnetic field components on the TSS surface in the first time simulation. The other is to
transform the recorded fields to the electromagnetic currents with Equation (2), and then the currents
are introduced into TSS surface as the excited equivalent source in the second time simulation. In
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Figure 1. The problem spaces using in TSS FDTD method. (a) In the first simulation. (b) In the
second simulation.
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Figure 2. Diagram of nodes located on the TSS surface in TM mode.

the first simulation, the computation space, shown in Fig. 1(a), is meshed in a fine cell size in order to
simulate the excited source precisely. In the second simulation the space is meshed in a coarse cell size in
order to calculate radiated fields going through a long distance. Each computation space is surrounded
by a convolution perfectly matched layer (CPML) absorbing boundary condition [14, 15] to model the
open environment.

In a two-dimensional case, the TSS surface is an enclosed rectangular curve, illustrated in Fig. 2.
For further conveniently stating the proposed method, we assume that the ratio of a coarse cell size to
a fine cell size is set as N . The formula for N gives

δ2

δ1
=

Δt2
Δt1

= N (3)

where δ1 and Δt1 are the spatial and time increments in the first simulation. Similarly, δ2 and Δt2 are
the spatial and time increments in the second simulation.

The value N takes on either an odd or even integer. We found that when N is an even integer, the
update equations of TSS FDTD are more complex than those when N is an odd integer. Therefore, we
emphasize how to implement the update equations when N is an even integer.

Consider the E-surface parallel to y direction when x = i0δ1. The equivalent electromagnetic
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currents on the TSS surface are obtained as{
�J−x
s = �n × �H = −�x × (Hx,Hy, 0) = −Hy�z

�J−x
ms = −�n × �E = �x × (0, 0, Ez) = −Ez�y

(4)

According to Fig. 2, assume that the variables E′ and H ′ with the symbol ‘′’ are defined in the second
simulation, and similarly, the variables E and H without the symbol ‘′’ are used in the first simulation.
In Fig. 2, the arrow symbol ‘→’ stands for the nodes of magnetic field, and the circle symbol ‘•’
denotes the nodes of electric field. Seen from Fig. 2, the electric field node of E′

z(i
′
0δ2, j

′δ2) on the TSS
surface belongs to the total-field zone. Referring to Equation (1), if we want to calculate the value
of E′

z(i′0δ2, j
′δ2) on time instant (n + 1)Δt, the update equation includes four magnetic field nodes.

However, the node of H ′
y(i

′
0δ2 + δ2/2, j′δ2) belongs to the scattered-field zone, and the other three nodes

are located at the total-field zone. Therefore, in order to keep the same property of fields at both ends
of equation, the update equation of E′

z(i
′
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′δ2) needs to introduce the incident fields at proper time
instant and spatial position. According to the idea, the update equation of E′n+1
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where the last four terms on the right-hand side of equation are the values of incident fields transformed
from the radiated fields recorded in the first simulation. Note that in (5) the algorithm of central
interpolation is used to introduce the incident fields at proper time instant and spatial position according
to the previous fields recorded in the first simulation. As we all know, the algorithm of central
interpolation has the second order accuracy. Meanwhile, the FDTD algorithm has also the second
order accuracy. Therefore, according to the total-field scattered field technique, we can implement the
field transformation at the TSS surface while maintaining the grid truncation errors within a proper
acceptance.

In a similar manner, consider the H-surface parallel to y direction when x = (i0 + 1/2)δ1.
Calculating the magnetic field node of H ′

y(i
′
0δ2 + δ2/2, j′δ2) in the scattered-field zone relates to

Ez(i0δ1, jδ1) in the total-field zone. So, the updated equation of H
′n+1/2
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where the coefficients CP(m) and CQ(m) are functions of position analogous to coefficients CA(m) and
CB(m). Note that the positions of nodes for the first and second simulations are related by

i′0δ2 = i0δ1, j′δ2 = jδ1 (7)

Similarly, the same processing is also taken for other nodes on the TSS surface. Limited space forbids
further listing all update equations here.

3. VERIFICATION OF THE ACCURACY

3.1. Radiated Fields of Line Current

In this section, we verify the accuracy of the TSS FDTD method. Numerical results simulated by TSS
FDTD are compared with the analytic solution and the conventional FDTD results.

Seen from Fig. 3, the calculation space is filled with a uniform water medium with εr = 80 and
σ = 0.018 S/m. We set the center of the problem space as the origin of coordinate system. The excited
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Figure 3. Diagrams of the problem space. (a) In the first simulation. (b) In the second simulation.

source is an electric dipole located at x = −0.5 m. The monitor point A away from the source is set as
lA = 1.0 m in the +x direction. The dashed-line rectangle presents the TSS surface with the physical
dimensions 1.0m× 1.0 m. In the first simulation, the computation space with dimensions 1.1m× 1.1 m
is meshed in a fine cell size, as shown in Fig. 3(a). With the help of the first simulation, we record the
radiated fields of the excited source on the TSS surface. Then, the recorded fields are transformed as the
equivalent electromagnetic currents which are used in the second simulation, in which the computation
space with dimensions 4m × 4 m is meshed in a coarse cell size, as shown in Fig. 3(b).

The line current source with a Gaussian pulse type is defined as

I(t) = 10−10 exp

[
−

(
t − T

T

)2
]

T = 50ns. (8)

Solving for radiation fields of a line current source polarized in the +z direction, an analytic solution is
given in [16]. Then, the formula for Ez component is given by

Ez (ρ, ω) =
k̃2

4
IH

(2)
0

(
k̃ρ

)
(9)

where H
(2)
0 is the zeroth order of Hankel function of second kind, and ρ is the distance of the monitor

point away from the line current source. The variable k̃ in (9) denotes the complex wave number.
The related computation parameters are listed in Table 1 in detail. The computation environment

is the PC HP Pro3380 CPU2.4 GHz MEM2.0 GB. The consumed memory and run time are also listed
in Table 1. An inspection of Table 1 shows that the consumed run time in TSS FDTD is decreased to
one-fifth of those spent by the conventional FDTD. In addition, the consumed memory is also greatly
reduced in contrast to the conventional FDTD.

Table 1. Parameters used in the line current case.

Method
Problem

space
(m×m)

Δx (m)
Δt

(ps)
Timestep

(Δt)

Consumed
memory
(MB)

Run
time
(s)

Conventional FDTD 4 × 4 0.01 16.66 20000 2.59 1050.67

TSS FDTD
with N = 10

first/second
time

simulation

1.1 × 1.1
/ 4 × 4

0.01/0.1 16.66/166.66 20000/2000 0.16/0.03 203.5/5.5

The radiated field versus time for monitor point A is plotted in Fig. 4. For comparison, we also
plot the results obtained by the conventional FDTD. In the figure, the symbol ‘o’ stands for results of
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Figure 4. Radiation fields of a line current at the monitor point A.
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Figure 5. Amplitude distributions of Ez fields. (a) In the operating frequency f = 1 kHz. (b) The
errors of these two methods.

the conventional FDTD simulation, and the solid line represents the results of TSS FDTD with N = 10.
It is noted that the radiated fields in TSS FDTD are in well agreement with those in the conventional
FDTD method.

Figure 5(a) represents the amplitude distributions of Ez component along the x axis in the working
frequency f = 1 kHz. The horizontal coordinate axis represents the distance away from the source in
the x axis, and the vertical coordinate axis shows amplitudes of the Ez field. The discrete star ‘*’ stands
for the results with the conventional FDTD. Similarly, the circle ‘o’ represents the results simulated
by the TSS FDTD with N = 10. For comparison, the analytic solution is also plotted in Fig. 5(a),
marked by the solid line. By comparing these curves in Fig. 5(a), we find that the simulated results
are in well agreement with analytic solution. In particular, the ratio of cell size in TSS FDTD to that
in the conventional FDTD is set as N = 10. Seen from Fig. 5(a), zero values appear in the range of
(0, 0.4 m) according to the TSS FDTD simulation, which imply no fields propagating inside the TSS
surface, which means that in the second simulation of TSS FDTD the radiated fields only propagate
out of the TSS surface and no incident fields inside of the TSS surface.

Figure 5(b) gives the absolute error distributions of these two methods at the monitor line. The
error formula which we used is

Error = |Ez|Comp. − Ez|Anal.| (10)
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which is the difference between the simulated results and the analytic solution. An inspection of Fig. 5(b)
shows that at the range of interest, the absolute error of TSS FDTD with N = 10 is less than that of
the conventional FDTD. The maximum absolute error of TSS FDTD with N = 10 is about 0.20 mV/m,
which is within proper acceptance. An analysis of the error shows that the TSS FDTD method can
reduce the run time and consumed memory while maintaining the absolute error within acceptance
range.

3.2. Verifying the Scattered Fields

Another typical case with scattered object located in the problem space is discussed. The goal is to
prove that the establishment of a suitable TSS surface has no impact on the propagation of scattered
fields. In Fig. 6 the calculation space is filled with a uniform air medium with εr = 1.0 and σ = 0 S/m.
A perfect electric conductor (PEC) slab with dimensions 0.6m× 0.3 m is symmetrically placed in the x
axis, as sketched in Fig. 6. The PEC slab is located away from the source with the distance l = 1.3 m
along the +x direction. The source is a line current with a Gaussian type waveform located at the
center of the computation space. The monitor points A and B are symmetrically placed in the x axis.
The distance between each monitor point and the origin is set as 1 m. In Fig. 6, the dashed-line square
presents the TSS surface with the length 1.0 m. In this case, we use the TSS FDTD with N = 10 to
calculate scattered fields caused by the PEC slab.

source

TSS surface

air
air

absorbing boundary

0.6m

0.3m0.5m

PEC

A

x

y

0.3m

1m
4mB

(a) (b)

Figure 6. Diagrams of the calculation space of TSS FDTD. (a) In the first simulation. (b) In the
second simulation.

The related computation parameters in TSS FDTD are listed in Table 2. In order to verify the
results with TSS FDTD, and we also use the conventional FDTD to deal with the same case.

Table 2. Computation parameters in the case.

Method Problem space (m × m) Timestep (Δt) Δx (m) Δt (ps)
Conventional FDTD 4 × 4 12000 0.01 16.6

TSS FDTD
with N = 10

first/second
time simulation

1.1 × 1.1/4 × 4 12000/1200 0.01/0.1 16.6/166.6

The electric fields versus time of monitor points A and B are plotted in Figs. 7(a) and (b). The
symbol ‘o’ stands for results of the TSS FDTD method with the ratio N = 10. The solid line represents
the conventional FDTD results. Numerical results in TSS FDTD are well matched with those in the
conventional FDTD. Fig. 7(c) shows the absolute errors of TSS FDTD with N = 10 at points A and B,
which are obtained by subtracting field values in the conventional FDTD from those in TSS FDTD. Note
that the absolute errors of TSS FDTD mainly come from the TSS surface which is used to transform
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Figure 7. Comparison of the results of these two methods. (a) Point A. (b) Point B. (c) The errors.

electromagnetic fields between these two simulations with the central interpolation technique. The
second-order accurate method of central interpolation will cause a little error into the numerical results.
Nevertheless, from Fig. 7(c), the maximum absolute error of point B is equal to 1.4 V/m occurring on
t = 14.2 ns, which is to say that the maximum relative error of point B is equal to 2%, within proper
acceptance. The absolute error of point A is less than that of point B at each time instant.

In order to graphically display how scattered fields propagate through the TSS surface, phase
snapshots are recorded and drawn in Fig. 8. The recorded time instant is t = 26.66 ns, and the
operating frequency is f = 200 MHz. Seen from Fig. 8, the phase distributions inside of TSS surface
satisfy the characteristic of a propagating wave of scattered fields, which means that the scattered fields
go through the TSS surface and spread without non-physical reflection caused by the existence of TSS
surface. An inspection of Figs. 8(a) and (b) shows that the phase snapshots obtained by TSS FDTD
are consistent with those by the conventional FDTD. Therefore, this example also verifies the validity
of the TSS surface in TSS FDTD.

In summary, an analysis of these two cases verifies that the TSS surface is valid and available to
simulate the original excited source.

4. DISTINGUISHING OBSTACLES UNDERWATER

A model of underwater problem is built up, as sketched in Fig. 9. The entire computation space is divided
into three parts. The upper layer is air, the middle layer water, and the lower layer underwater ground.
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(a) (b)

Figure 8. The phase snapshots of Ez-field in the xoy plane. (a) The conventional FDTD. (b) The TSS
FDTD with N = 10.
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Figure 9. The geometry model of the example.

Table 3. Properties of the materials in the
example.

Material εr σ (S/m)
air 1 0

water 80 0.018
underwater ground 6 0.33

high resistivity body 1 0
low resistivity body 4 100

Table 4. Three cases in the example.

�
��

obstacle A obstacle B

Case 1
underwater

ground
underwater

ground

Case 2 high
resistivity body

low resistivity
body

Case 3
low resistivity

body
high resistivity

body

There are two obstacles within the range of underwater ground. In order to keep unit consistence with
the previous cases, we still use the International System of units in this section. The water layer is 400 m
thick. The sizes of these two obstacles are the same as 200m×700 m. For the TSS FDTD method with
N = 10, the cell size is 1m × 1 m for the first simulation and 10m × 10 m for the second simulation.
The dashed-line square presents the TSS surface with dimensions 100m × 100 m. In this case, in order
to distinguish obstacles located inside the underwater ground, we discuss two kinds of obstacles with
different electromagnetic constitutive parameters. Three different cases are considered in this section.
The computation parameters are listed in Table 3 and Table 4.
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Table 5. Comparison of these two methods.

Method Δx
(m)

Number of
grids

Timestep
(Δt)

Consumed
memory
(MB)

Run
time (s)

Conventional FDTD 1 2000 × 1000 5 × 106 95.1 764662
TSS FDTD
with N = 10

first/second
time simulation 1/10 120 × 120

/220 × 120 5 × 106/5 × 105 1.18/2.02 2588/373

The excited source is a line current source with a Gaussian pulse type placed in water with the
distance y = 200 m from the most upper interface. Establish the Cartesian coordinate system, as shown
in Fig. 9. The source position is assumed to set as the origin of system. There are total 12 observation
points to be recorded, marked by integer numbers from 1 to 12. These observation points are linearly
equally distributed with the spacial increment Δx = 100 m along the x axis. The first point is set as
the location with the distance y = −180 m directly below the excited source. The distance between the
plane containing these observation points and the upper surface of obstacles is 40 m. The observation
points 1 to 4 are located above obstacle A, and observation points 5 to 12 are above obstacle B.

Due to the dispersion characteristics of water and ground, it takes millions of time-steps to record
the entire pulse at these observation points. Table 5 lists many parameters used in these two methods.
An inspection of Table 5 shows that it takes almost 764662 seconds to deal with the case, if we use
the conventional FDTD method, which is unacceptable. If we use the proposed method, however, only
2961 seconds for the two-step simulation are required to calculate the same case. The run time in TSS
FDTD is 0.4% less than that in the conventional FDTD. Therefore, comparing the conventional FDTD
method, a lot of run time and consumed memory are greatly saved by using TSS FDTD with N = 10.

Figure 10 shows the normalized waveform recorded at the 12 observation points. Seen from Fig. 10,
it is noted that different constitutive parameters cause different waveforms at each observation point.
In Fig. 10, the solid line denotes field distributions versus time at observation points when there are
no obstacles inside of the underwater ground, as marked by Case 1. The dashed line stands for field
distributions versus time when obstacle A and obstacle B are designated as the high resistivity body
and low resistivity body, respectively, as marked by Case 2. The dotted line is the case when obstacle
A and obstacle B are assigned as the low resistivity body and high resistivity body, respectively, as
marked by Case 3. By comparing these curves for different cases, it is known that field intensities for
observation points 1 to 4 in Case 2 are stronger than those in Case 3. This is the reason that in Case
2 there is a high resistivity body below observation points 1 to 4, but a low resistivity body in Case 3
below these observation points. On the contrary, for observation points 7 to 12, field intensities in Case
3 are stronger than those in Case 2. It is the reason that below observation points 7 to 12, there is a
high resistivity body in Case 3, but a low resistivity body in Case 2. Due to radiated fields obliquely
propagating through observation points 5 and 6, the field intensity differences are gradually diminished.
Therefore, we can clearly distinguish types of obstacle underwater by analyzing the characteristic of
field intensity.

In order to further clearly express characteristics of scattered fields from different types of obstacles,
we consider the difference of field intensities between Case 2 or Case 3 and in Case 1. As shown in
Fig. 11 in detail, the dashed line represents the difference of field intensity between Case 2 and Case 1,
and the solid line stands for the difference between Case 3 and Case 1. By analyzing these two curves
in Fig. 11, it is found that the sign of difference is reversed from observation points 1 to 12. Moreover,
for observation points 1 to 5 the differences marked in solid line take on the minus sign in the first peak,
while the difference in dashed line is the positive sign in the first peak. Similarly, for observation points
7 to 12 the difference in solid line takes on the positive sign in the first peak, while the difference in
dashed line is the minus sign. The reason for the special phenomenon is that the obstacles in Case 3
are aligned in a proper order with the low resistivity body and the high resistivity body along the x
axis, while Case 2 are the high resistivity body and the low resistivity body along the x axis.

Comparing these curves in Fig. 11, there is also a little difference in the phase of scattered fields.
Assuming that the phase of scattered fields in Case 1is referred to as the reference phase, it is obvious
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Figure 11. Normalized amplitude differences at
the observation points.

that for observation points 1 to 5 the phase in Case 3 of phase lags compared with that in Case 2. On
the contrary, the phase in Case 3 for observation points 7 to 12 are of phase advance compared with
that in Case 2, which means that the waveform of scattered fields in Case 2 first propagates through
observation points 1 to 5 compared with that in Case 3. On the contrary, the waveform in Case 3 first
propagates through observation points 7 to 12 compared with that in Case 2. It is the reason that the
alignment of obstacles A and B is in a different order within underwater ground. The phase difference
of scattered fields between Case 2 and Case 3 implyies that the velocity of propagating wave is different
through different media. Fig. 10 and Fig. 11 show that the propagating velocity in high resistivity body
is faster than that in low resistivity body. This conclusion is consistent with the rule of electromagnetic
wave propagation [16].

5. CONCLUSION

A two-dimensional TSS FDTD method has been proposed for detecting obstacles underwater with
low frequency electromagnetic wave in this paper. With the dual discretization technology, the TSS
FDTD method includes a two-step procedure to simulate the electromagnetic field problems. The space
including the excited source is meshed in a fine cell size. The remaining space including the obstacles
is meshed in a coarse cell size. The spatial increment ratio of a coarse cell size to a fine cell size can
be set as an arbitrary integer, such as N = 10. These two simulations are related by the TSS surface.
We verify the validity of the TSS FDTD by two cases. One case is to simulate the radiated fields of
line current source. The other is to show the scattered fields from obstacles can properly propagate
through the connecting TSS surface. An analysis of the absolute error shows that the establishment
of TSS surface is valid and suitable. Finally, a case of detecting obstacles within underwater ground is
presented. Numerical results show that by analyzing the magnitude and phase of scattered fields from
obstacles underwater, we can distinguish the category of the obstacles which is either a high resistivity
body or a low resistivity body. For the low resistivity body, it may be a kind of metal underwater,
and the high resistivity body probably is a kind of oil-gas underwater. For example, we can use the
proposed method to analyze scattered fields underwater for distinguishing the oil-gas resource from
the metal obstacles. Therefore, the proposed method provides us an effective tool for analyzing the
electromagnetic response of materials underwater.
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