1. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830
2. Roy, R., "ESPRIT --- Estimation of signal parameters via rotational invariance techniques,", Ph.D. Dissertation, Stanford University, 1987.
3. Pillai, S. U. and B. H. Kwon, "Forward/backward smoothing techniques for coherent signal identification," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, 8-15, 1989.
doi:10.1109/29.17496
4. Du, W. X. and R. L. Kirlin, "Improved spatial smoothing techniques for DOA estimation of coherent signals," IEEE Trans. Signal Process., Vol. 39, 1208-1210, 1991.
doi:10.1109/78.80975
5. Krekel, P. and E. Deprettere, "A two-dimensional version of the matrix pencil method to solve the DOA problem," European Conference on Circuit Theory and Design, 435-439, 1989.
6. Yin, Q., R. Newcomb, and L. Zou, "Estimation 2-D angles of arrival via parallel linear array," 1989 International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, 2803-2806, 1989.
doi:10.1109/ICASSP.1989.267051
7. Sakarya, F. A. and M. H. Hayes, "Estimation 2-D DOA using nonlinear array configurations," IEEE Trans. Signal Process., Vol. 43, 2212-2216, Sep. 1995.
doi:10.1109/78.414789
8. Wu, Y., G. Liao, and H. C. So, "A fast algorithm for 2-D direction-of-arrival estimation," Signal Processing, Vol. 83, 1827-1831, 2003.
doi:10.1016/S0165-1684(03)00118-X
9. Tayem, N. and H. Kwon, "L-shape-2-D arrival angle estimation with propagator method," IEEE Trans. Antennas Propagation, Vol. 53, 1622-1630, 2005.
doi:10.1109/TAP.2005.846804
10. Zhang, X., X. Gao, and W. Chen, "Improved blind 2D-direction of arrival estimation with L-shaped array using shift invariance property," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5, 593-606, 2009.
doi:10.1163/156939309788019859
11. Gershman, A. B., M. Rubsamen, and M. Pesavento, "One- and two-dimensional direction-of-arrival estimation: An overview of search-free techniques," Signal Processing, Vol. 90, 1338-1349, 2010.
doi:10.1016/j.sigpro.2009.12.008
12. Zhang, X., J. Li, and L. Xu, "Novel two-dimensional DOA estimation with L-shaped arra," EURASIP Journal on Advances in Signal Processing, Article ID 490289, 10 Pages, 2011.
13. Wang, G., J. Xin, N. Zheng, and A. Sano, "Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array," IEEE Trans. Signal Process., Vol. 59, No. 7, 3197-3212, 2011.
doi:10.1109/TSP.2011.2144591
14. Gu, J.-F., P. Wei, and H.-M. Tai, "2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix," Signal Processing, Vol. 88, 75-85, 2008.
doi:10.1016/j.sigpro.2007.07.013
15. Wang, G., J. Xin, N. Zheng, and A. Sano, "Two-dimensional direction estimation of coherent signals with two parallel uniform linear arrays," IEEE Statistical Signal Processing Conference, 28-30, Jun. 2011.
16. Palanisamy, P., P. N. Kalyanasundaram, and P. M. Swetha, "Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array," Signal Processing, Vol. 92, 19-28, 2012.
doi:10.1016/j.sigpro.2011.05.021
17. Bojanczyk, A. W., R. B. Brent, and F. B. de Hoog, "QR factorization of toeplitz matrices," Numerical Math, Vol. 49, 81-94, 1986.
doi:10.1007/BF01389431
18. Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1983.
19. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Trans. Acoust., Speech, Signal Process., Vol. 38, 814-824, 1990.
doi:10.1109/29.56027