Vol. 47
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-07-21
Two Uniform Linear Arrays for Non-Coherent and Coherent Sources for Two Dimensional Source Localization
By
Progress In Electromagnetics Research Letters, Vol. 47, 31-39, 2014
Abstract
This paper presents a novel method for the two-dimensional direction of arrival (DOA) estimation based on QR decomposition. A configuration with two uniform linear antenna arrays (ULA) is employed for the joint estimation of elevation (θ) and azimuth (φ) angles. Q data matrix will estimate the azimuth angle while R data matrix will estimate the elevation angle. The proposed method utilizes only a single snapshot of the received data and constructs a Toeplitz data matrix. This reduces the computational complexity of the proposed method to O((N+1)2) from O(N3) for SVD based methods. The structure of the data matrix also favors the 2D DOA estimation for both coherent and non-coherent source signals. Simulation results are presented, and performance of the proposed method is compared with the Matrix Pencil method for 2D DOA estimation of multiple incident source signals.
Citation
Muhammad Omer, Nizar Tayem, and Ahmed Abul Hussain, "Two Uniform Linear Arrays for Non-Coherent and Coherent Sources for Two Dimensional Source Localization," Progress In Electromagnetics Research Letters, Vol. 47, 31-39, 2014.
doi:10.2528/PIERL14051903
References

1. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

2. Roy, R., "ESPRIT --- Estimation of signal parameters via rotational invariance techniques,", Ph.D. Dissertation, Stanford University, 1987.

3. Pillai, S. U. and B. H. Kwon, "Forward/backward smoothing techniques for coherent signal identification," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, 8-15, 1989.
doi:10.1109/29.17496

4. Du, W. X. and R. L. Kirlin, "Improved spatial smoothing techniques for DOA estimation of coherent signals," IEEE Trans. Signal Process., Vol. 39, 1208-1210, 1991.
doi:10.1109/78.80975

5. Krekel, P. and E. Deprettere, "A two-dimensional version of the matrix pencil method to solve the DOA problem," European Conference on Circuit Theory and Design, 435-439, 1989.

6. Yin, Q., R. Newcomb, and L. Zou, "Estimation 2-D angles of arrival via parallel linear array," 1989 International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, 2803-2806, 1989.
doi:10.1109/ICASSP.1989.267051

7. Sakarya, F. A. and M. H. Hayes, "Estimation 2-D DOA using nonlinear array configurations," IEEE Trans. Signal Process., Vol. 43, 2212-2216, Sep. 1995.
doi:10.1109/78.414789

8. Wu, Y., G. Liao, and H. C. So, "A fast algorithm for 2-D direction-of-arrival estimation," Signal Processing, Vol. 83, 1827-1831, 2003.
doi:10.1016/S0165-1684(03)00118-X

9. Tayem, N. and H. Kwon, "L-shape-2-D arrival angle estimation with propagator method," IEEE Trans. Antennas Propagation, Vol. 53, 1622-1630, 2005.
doi:10.1109/TAP.2005.846804

10. Zhang, X., X. Gao, and W. Chen, "Improved blind 2D-direction of arrival estimation with L-shaped array using shift invariance property," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5, 593-606, 2009.
doi:10.1163/156939309788019859

11. Gershman, A. B., M. Rubsamen, and M. Pesavento, "One- and two-dimensional direction-of-arrival estimation: An overview of search-free techniques," Signal Processing, Vol. 90, 1338-1349, 2010.
doi:10.1016/j.sigpro.2009.12.008

12. Zhang, X., J. Li, and L. Xu, "Novel two-dimensional DOA estimation with L-shaped arra," EURASIP Journal on Advances in Signal Processing, Article ID 490289, 10 Pages, 2011.

13. Wang, G., J. Xin, N. Zheng, and A. Sano, "Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array," IEEE Trans. Signal Process., Vol. 59, No. 7, 3197-3212, 2011.
doi:10.1109/TSP.2011.2144591

14. Gu, J.-F., P. Wei, and H.-M. Tai, "2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix," Signal Processing, Vol. 88, 75-85, 2008.
doi:10.1016/j.sigpro.2007.07.013

15. Wang, G., J. Xin, N. Zheng, and A. Sano, "Two-dimensional direction estimation of coherent signals with two parallel uniform linear arrays," IEEE Statistical Signal Processing Conference, 28-30, Jun. 2011.

16. Palanisamy, P., P. N. Kalyanasundaram, and P. M. Swetha, "Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array," Signal Processing, Vol. 92, 19-28, 2012.
doi:10.1016/j.sigpro.2011.05.021

17. Bojanczyk, A. W., R. B. Brent, and F. B. de Hoog, "QR factorization of toeplitz matrices," Numerical Math, Vol. 49, 81-94, 1986.
doi:10.1007/BF01389431

18. Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1983.

19. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Trans. Acoust., Speech, Signal Process., Vol. 38, 814-824, 1990.
doi:10.1109/29.56027