Vol. 37
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-07-01
Properties of MUSIC-Type Algorithm for Imaging of Thin Dielectric Inhomogeneity in Limited-View Inverse Scattering Problem
By
Progress In Electromagnetics Research M, Vol. 37, 109-118, 2014
Abstract
It is well known that MUltiple SIgnal Classification (MUSIC)-type algorithm produces a good result for the imaging of thin dielectric inhomogeneity in full-view inverse scattering problems. In contrast, it yields a poor result in limited-view inverse scattering problems. In this paper, we verify the reason for the above by establishing a relationship between a MUSIC-type imaging function and the Bessel functions of the integer order of the first kind. This verification is based on the asymptotic expansion formula for thin dielectric inhomogeneity. Various numerical examples are shown for confirming our verification.
Citation
Won-Kwang Park, "Properties of MUSIC-Type Algorithm for Imaging of Thin Dielectric Inhomogeneity in Limited-View Inverse Scattering Problem," Progress In Electromagnetics Research M, Vol. 37, 109-118, 2014.
doi:10.2528/PIERM14050403
References

1. Alvarez, D., O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., Vol. 228, 5710-5721, 2009.
doi:10.1016/j.jcp.2009.04.038

2. Ammari, H., J. Garnier, V. Jugnon, and H. Kang, "Stability and resolution analysis for a topological derivative based imaging functional," SIAM J. Control. Optim., Vol. 50, 48-76, 2012.
doi:10.1137/100812501

3. Ammari, H., J. Garnier, H. Kang, W.-K. Park, and K. Solna, "Imaging schemes for perfectly conducting cracks," SIAM J. Appl. Math., Vol. 71, 68-91, 2011.
doi:10.1137/100800130

4. Ammari, H., E. Iakovleva, and aD. Lesselier, "A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency," SIAM Multiscale Modeling Simulation, Vol. 3, 597-628, 2005.
doi:10.1137/040610854

5. Ammari, H., H. Kang, E. Kim, K. Louati, and M. S. Vogelius, "A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements," Numer. Math., Vol. 108, 501-528, 2008.
doi:10.1007/s00211-007-0130-x

6. Ammari, H., H. Kang, H. Lee, and W.-K. Park, "Asymptotic imaging of perfectly conducting cracks," SIAM J. Sci. Comput., Vol. 32, 894-922, 2010.
doi:10.1137/090749013

7. Beretta, E. and E. Francini, "Asymptotic formulas for perturbations of the electromagnetic fields in the presence of thin imperfections," Contemp. Math., Vol. 333, 49-63, 2003.
doi:10.1090/conm/333/05953

8. Chen, X. and Y. Zhong, "MUSIC electromagnetic imaging with enhanced resolution for small inclusions," Inverse Problems, Vol. 25, 015008, 2009.
doi:10.1088/0266-5611/25/1/015008

9. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, Vol. 22, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01

10. Joh, Y.-D. and W.-K. Park, "Structural behavior of the MUSIC-type algorithm for imaging perfectly conducting cracks," Progress In Electromagnetics Research, Vol. 138, 211-226, 2013.
doi:10.2528/PIER13013104

11. Kwon, Y. M. and W.-K. Park, "Analysis of subspace migration in the limited-view inverse scattering problems," Appl. Math. Lett., Vol. 26, 1107-1113, 2013.
doi:10.1016/j.aml.2013.05.015

12. Ma, Y.-K., P.-S. Kim, and W.-K. Park, "Analysis of topological derivative function for a fast electromagnetic imaging of perfectly conducing cracks," Progress In Electromagnetics Research, Vol. 122, 311-325, 2012.
doi:10.2528/PIER11092901

13. Ma, Y.-K. and W.-K. Park, "A topological derivative based non-iterative electromagnetic imaging of perfectly conducting cracks," J. Electromagn. Eng. Sci., Vol. 12, 128-134, 2012.

14. Nazarchuk, Z. and K. Kobayashi, "Mathematical modelling of electromagnetic scattering from a thin penetrable target," Progress In Electromagnetics Research, Vol. 55, 95-116, 2005.
doi:10.2528/PIER05022003

15. Park, W.-K., "Multi-frequency topological derivative for approximate shape acquisition of curve-like thin electromagnetic inhomogeneities," J. Math. Anal. Appl., Vol. 402, 501-518, 2013.
doi:10.1016/j.jmaa.2013.03.040

16. Park, W.-K., "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, Vol. 26, 074008, 2010.
doi:10.1088/0266-5611/26/7/074008

17. Park, W.-K., "On the imaging of thin dielectric inclusions via topological derivative concept," Progress In Electromagnetics Research, Vol. 110, 237-252, 2010.
doi:10.2528/PIER10101305

18. Park, W.-K., "Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusion," J. Comput. Phys., Vol. 231, 1426-1439, 2012.
doi:10.1016/j.jcp.2011.10.014

19. Park, W.-K. and D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency," J. Comput. Phys., Vol. 228, 8093-8111, 2009.
doi:10.1016/j.jcp.2009.07.026

20. Park, W.-K. and D. Lesselier, "Fast electromagnetic imaging of thin inclusions in half-space affected by random scatterers," Waves Random Complex Media, Vol. 22, 3-23, 2012.
doi:10.1080/17455030.2010.536854

21. Park, W.-K. and D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, Vol. 25, 075002, 2009.
doi:10.1088/0266-5611/25/7/075002

22. Park, W.-K. and D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, Vol. 25, 085010, 2009.
doi:10.1088/0266-5611/25/8/085010

23. Rosenheinrich, W., "Tables of some indefinite integrals of bessel functions,", available at http://www.fh-jena.de/»rsh/Forschung/Stoer/besint.pdf.

24. Solimene, R., A. Dell'Aversano, and G. Leone, "Interferometric time reversal MUSIC for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.
doi:10.2528/PIER12062103