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Properties of MUSIC-Type Algorithm for Imaging of Thin Dielectric
Inhomogeneity in Limited-View Inverse Scattering Problem

Won-Kwang Park*

Abstract—It is well known that a Multiple Signal Classification (MUSIC)-type algorithm yields good
results in the imaging of thin dielectric inhomogeneity for full-view inverse scattering problems. In
contrast, it yields a poor result in limited-view inverse scattering problems. In this paper, we verify
the reason for the above by establishing a relationship between a MUSIC-type imaging function and
the Bessel functions of the integer order of the first kind. This verification is based on the asymptotic
expansion formula for thin dielectric inhomogeneity. Various numerical examples are discussed for
confirming our verification.

1. INTRODUCTION

The main purpose of inverse scattering problems is to identify the unknown characteristics of unknown
scatterers, such as locations, shapes, dielectric permittivities, and magnetic permeabilities. Most
inverse scattering problems focus on shape reconstruction. Accordingly, various algorithms for shape
reconstruction have been developed in the recent past. Most of these algorithms are based on Newton-
type iteration schemes. Related works can be found in [1, 9, 22] and the references therein. However,
for a successful application, an initial guess that is sufficiently close to the unknown target is required.
If not, one must consider the significant amount of computational costs, local minimal problems, and
non-convergence issues.

Alternatively, various non-iterative shape reconstruction methods have been investigated. Among
them, the MUltiple SIgnal Classification (MUSIC) algorithm has been successfully applied to
various problems such as the location search of small defects [3], anti-personnel mines [4], internal
corrosion [5], and the shape identification of thin electromagnetic inhomogeneities and perfectly
conducting cracks [6, 17, 19, 21]. However, in most of the studies that we mentioned above, the MUSIC
algorithm has been applied only in full-view inverse scattering problems. In a limited-view problem
such as the detection of inhomogeneities buried in a half-space problem considered in [4, 17], MUSIC
produces very poor results. However, this fact has been observed only in the results via numerical
simulation. Therefore, the development of a mathematical theory about the structure of the MUSIC
algorithm is considered.

Recently, the structure of a MUSIC-type imaging function in a full-view problem has been
established in [10]. However, the mathematical theory about its structure in a limited-view problem
has not been established; it has, however, been used heuristically in many works. Motivated by this
fact, we extend the recent work on structure analysis of MUSIC-type imaging in a full-view problem to
the limited-view problem for the imaging of thin dielectric inhomogeneity by establishing a relationship
between the MUSIC-type imaging function and the Bessel functions of integer order of the first kind.
This is based on the fact that a measured far-field pattern can be written by an asymptotic expansion
formula for the existence of thin inhomogeneity. From the derived structure, we can find out why the
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MUSIC algorithm produces poor results in the limited-view problems and derive a condition for an
acceptable imaging performance.

The remainder of this paper is organized as follows. In Section 2, we introduce two-dimensional
direct scattering problems and the asymptotic expansion formula of a far-field pattern in the presence
of thin dielectric inhomogeneity. In Section 2.1, we briefly mention the MUSIC-type imaging algorithm.
Its structure and certain properties in the limited-view problem are respectively derived and discussed
in Section 3. In Section 4, some numerical experiments are discussed for supporting the identified
structure. A short conclusion is presented in Section 5.

2. DIRECT SCATTERING PROBLEMS AND FAR-FIELD PATTERN

In a two-dimensional homogeneous space R2, there exists thin, curve-like dielectric inhomogeneity Γ,
which is localized in the neighborhood of a smooth curve σ such that

Γ = {x + ηn(x) : x ∈ σ, − h ≤ η ≤ h} ,

where n(x) denotes the unit normal to σ at x, and h denotes the thickness of Γ (see Figure 1). In this
paper, we assume that h ¿ λ, where λ denotes the given wavelength. Assume that every material is
fully characterized by its dielectric permittivity at a given frequency ω = 2π/λ. Let ε0 and ε denote
the permittivities of R2 and Γ, respectively. Throughout this paper, we assume that the magnetic
permeabilities of Γ and R2 are same as µ0.

Figure 1. Two-dimensional thin dielectric inhomogeneity Γ with supporting curve σ.

For a given frequency, let u(x) be the time-harmonic total field that satisfies the Helmholtz equation
in the existence of Γ:

1
µ0
4u(x) + ω2

(
εχ(Γ) + ε0χ

(
R2\Γ))

u(x) = 0 in R2. (1)

Let u0(x) = exp(iωθ · x) be the background solution and us(x) be the unknown scattered field. Here,
θ = [cos θ, sin θ]T represents a two-dimensional vector on the unit circle, S1 describes the direction, and
us(x) satisfies the Sommerfeld radiation condition

lim
|x|→∞

√
|x|

(
∂us(x)
∂ |x| − ik0us(x)

)
= 0

uniformly in all the directions x̂ = x/ |x|. Here, k0 denotes the wavenumber k0 = ω
√

ε0µ0. For the
sake of simplicity, we set ε0 = 1 and µ0 = 1, i.e., k0 = ω. The far-field pattern is defined as a function
u∞(ŷ,θ) that satisfies

us(y) =
exp(iω|y|)√

|y| u∞(ŷ, θ) + o

(
1√
|y|

)

as |y| −→ ∞ uniformly on ŷ = y/|y| and θ ∈ S1. Then, the asymptotic formula for the far-field pattern
can be represented as follows: Based on [7], it can be represented as follows:
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Lemma 2.1. [Asymptotic expansion formula] Let u(x) satisfy (1); then, u∞(ŷ, θ) can be represented
as the following asymptotic expansion formula:

u∞(ŷ, θ) = h
ω2(1 + i)

4
√

ωπ

∫

σ
(ε− ε0) exp(iω(θ − ŷ) · x)dσ(x) + o(h), (2)

where o(h) is uniform in x ∈ σ, ŷ, θ ∈ S1.

2.1. Introduction to MUSIC Algorithm

In this section, we apply the asymptotic expansion formula (2) to introduce MUSIC algorithm. Before
starting, we assume that for a given frequency ω, the thin inhomogeneity is divided into M different
segments of the size of order λ/2. Considering the Rayleigh resolution limit from the far-field data,
any detail less than one-half of the wavelength cannot be imaged, and only one point, say xm,
m = 1, 2, . . . , M , at each segment is imaged [3, 19, 21]. In this section, we denote a discrete finite
set of the incident directions as {θ1,θ2, . . . , θN} and the same number of observation directions as
{ϑ1, ϑ2, . . . , ϑN}. The MUSIC algorithm is based on the structure of singular vectors linked to the
non-zero singular vectors of the so-called Multi-Static Response (MSR) matrix K(ω) = [Kjl(ω)]Nj,l=1,
whose element Kjl(ω) = u∞(ϑj , θl) is the far-field pattern collected at observation number j for the
incident wave numbered l.

Let us consider the Singular Value Decomposition (SVD) on K:

K(ω) = U(ω)S(ω)V(ω)∗ =
N∑

m=1

τm(ω)Um(ω)Vm(ω)∗ ≈
M∑

m=1

τm(ω)Um(ω)Vm(ω)∗,

where the superscript ∗ denotes the Hermitian matrix, Um and Vm represent the left and right singular
vectors of K, and τm denotes the non-zero singular values that satisfy

τ1 ≥ τ2 ≥ . . . ≥ τM and τm ≈ 0 for m = M + 1,M + 2, . . . , N.

Then, since {U1,U2, . . . ,UM} is the basis for the signal space of K, we can define a projection
operator onto the noise subspace:

Pnoise = I(N)−
M∑

m=1

UmU∗
m,

where I(N) denotes the N ×N identity matrix. For any z ∈ R2, define a test vector f(z) as

f(z) =
1√
N

[exp(iωθ1 · z), exp(iωθ2 · z), . . . , exp(iωθN · z)]T (3)

and MUSIC-type imaging function

IMUSIC(z; ω) =
1

|Pnoise(f(z);ω)| .

Then, IMUSIC(z; ω) will plot the peaks of a large magnitude at z ∈ σ and those of a small magnitude
at z /∈ Γ.

3. STRUCTURE OF MUSIC-TYPE IMAGING FUNCTION IN LIMITED-VIEW
PROBLEM

We explore the structure of a MUSIC-type imaging function in the limited-view inverse scattering
problems. For this, we assume that 0 < θ1 < θ2 < . . . < θN < 2π and θn ∈ S1∗  S1 for n = 1, 2, . . . , N .
For the sake of simplicity, we exclude the constant hω2(1 + i)/(4

√
ωπ) and the residue term o(h) in (2)

and assume that the incident and observation directions are the same, i.e., ϑj = −θj for j = 1, 2, . . . , N .
Then,

Kjl(ω) ≈
∫

σ
(ε− 1) exp(iω(θj + θl) · x)dσ(x) ≈ length(σ)

M

M∑

m=1

(ε− 1) exp(iω(θj + θl) · xm), (4)
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where length(σ) denotes the length of σ (refer to [21]). Based on this, K can be decomposed as follows:

K =
length(σ)

M
(ε− 1)

M∑

m=1

W(xm)W(xm)T ,

where W(y) is defined in (5). Then, the following result holds.
Lemma 3.1. For θn ∈ S1∗, define

W(z) =
1√
N

[exp(iωθ1 · z), exp(iωθ2 · z), . . . , exp(iωθN · z)]T . (5)

Then, Um ≈ W(xm) for m = 1, 2, . . . ,M .
Further, we introduce a useful formula that describes a relationship between a definite integration

of the exponential function on the subset of a unit circle and the Bessel function of an integer order of
the first kind. A rigorous derivation can be found in [11].

Lemma 3.2. For θ ∈ S1∗ and z = |z|[cosφ, sinφ]T ∈ R2, the following approximation holds uniformly

1
N

N∑

n=1

exp(iωθn · z) ≈ 1
θN − θ1

∫

S1∗
exp(iωθ · z)dθ = J0(ω|z|) +

Ξ(z; ω)
θN − θ1

,

where Jn denotes the Bessel function of order n of the first kind and Ξ(z; ω) is given by

Ξ(z;ω) = 4
∞∑

n=1

in

n
Jn(ω|z|) sin

(
n(θN − θ1)

2

)
cos

(
n(θN + θ1 − 2φ)

2

)
.

Now, we derive the structure of single-frequency MUSIC-type imaging function in the limited-view
problem.
Theorem 3.3 (Single-frequency MUSIC). Let ω and N be sufficiently large. Let us write z − xm =
|z− xm|[cosφm, sinφm]T then, IMUSIC(z;ω) is of the form:

IMUSIC(z;ω) =

{
1−

M∑

m=1

∣∣∣∣J0(ω|z− xm|) +
Ξ(z− xm;ω)

θN − θ1

∣∣∣∣
2
}−1/2

, (6)

where |c|2 = cc for a complex number c.

Proof. Let us apply Lemma 3.1 to the projection operator. Then,

Pnoise(f(z);ω) ≈
(
I− 1

N

M∑

m=1

W(xm)W(xm)∗
)

f(z) =
1√
N




exp(iωθ1 · z)
exp(iωθ2 · z)

...
exp(iωθN · z)


−

1
N
√

N

M∑

m=1

A,

where

A =




exp(iωθ1 · z) +
∑

n∈N1

exp{iω(θ1 · xm + θn · (z− xm))}

exp(iωθ2 · z) +
∑

n∈N2

exp{iω(θ2 · xm + θn · (z− xm))}

...

exp(iωθN · z) +
∑

n∈NN

exp{iω(θN · xm + θn · (z− xm))}




Here, Ns := {1, 2, . . . , N} \{s}. Since,

exp(iωθs · z) = exp(iωθs · xm) exp{iωθs · (z− xm)},
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plugging this into A and applying Lemma 3.2, we can obtain

1
N

M∑

m=1

(
exp(iωθs · z) +

∑

n∈Ns

exp{iω(θs · xm + θn · (z− xm))}
)

=
M∑

m=1

exp(iωθs · xm)

(
1
N

N∑

n=1

exp{iωθn · (z− xm)}
)

=
M∑

m=1

exp(iωθs · xm)
(

J0(ω|z− xm|) +
Ξ(z− xm; ω)

θN − θ1

)
.

Hence, Pnoise(f(z);ω) becomes

Pnoise(f(z);ω) =
1√
N




exp(iωθ1 · z)−
M∑

m=1

Λm exp(iωθ1 · xm)

exp(iωθ2 · z)−
M∑

m=1

Λm exp(iωθ2 · xm)

...

exp(iωθN · z)−
M∑

m=1

Λm exp(iωθN · xm)




,

where
Λm := J0(ω|z− xm|) +

Ξ(z− xm; ω)
θN − θ1

.

Therefore, we can obtain

|Pnoise(f(z);ω)| =
(
Pnoise(f(z);ω) ·Pnoise(f(z);ω)

)1/2

=

(
1
N

N∑

n=1

{
1− 2Re(f1) + f2f2

})1/2

,

where

f1 :=
M∑

m=1

Λm exp(iωθn · (z− xm)) and f2 :=
M∑

m=1

Λm exp(iωθn · xm).

Now, applying Lemma 3.2 again, we can obtain

1
N

N∑

n=1

f1 =
1
N

N∑

n=1

M∑

m=1

Λm exp{iωθn · (z− xm)}

=
M∑

m=1

Λm

(
1
N

N∑

n=1

exp{iωθn · (z− xm)}
)

=
M∑

m=1

|Λm|2. (7)

Since ω is sufficiently large, following asymptotic form of Bessel function holds

Jn(ωx) =

√
2

ωxπ
cos

(
ωx− nπ

2
− π

4
+ O

(
1
|ωx|

))
. (8)

Hence, if m 6= m′,

J0(ω|xm − xm′ |) +
Ξ(xm − xm′)

θN − θ1
−→ 0.
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Therefore, by using Lemma 3.2, we can evaluate the following:

1
N

N∑

n=1

f2f2 =
1
N

N∑

n=1

M∑

m=1

M∑

m′=1

ΛmΛm′ exp{iωθn · (xm − xm′)}

=
M∑

m=1

M∑

m′=1

ΛmΛm′

(
1
N

N∑

n=1

exp{iωθn · (xm − xm′)}
)

=
M∑

m=1

ΛmΛm =
M∑

m=1

|Λm|2. (9)

Therefore, by using (7) and (9), we can obtain (6). This completes the proof.

Based on recent works [3, 10, 11, 15, 20], multi-frequency based imaging function yields better results
than single-frequency based one. In contrast, in the limited-view problem, one cannot obtain a good
result via multi-frequency MUSIC algorithm, refer to [16]. However, this fact has been identified
heuristically so that mathematical identification is still required. Motivated from this fact, we now
explore the structure of the multi-frequency MUSIC-type imaging to identify this phenomenon. For
given S-different frequencies {ωs : s = 1, 2, . . . , S}, let us introduce following multi-frequency MUSIC-
type imaging function:

IMULTI(z;S) :=

∣∣∣∣∣
1
S

S∑

s=1

Pnoise(f(z);ωs)

∣∣∣∣∣

−1

.

Then, applying Theorem 3.3, we can immediately obtain following result.

Theorem 3.4 (Multi-frequency MUSIC). Assume that ωs, S, and N are sufficiently large. Let us
write z− xm = |z− xm|[cosφm, sinφm]T . Then, multi-frequency MUSIC-type imaging function can be
represented as follows:

IMULTI(z; S) =

{
1−

M∑

m=1

∣∣∣∣Φ(z− xm; ω1, ωS) +
Ψ(z− xm; ω1, ωS)

θN − θ1

∣∣∣∣
2
}−1/2

, (10)

where

Φ(x;ω1, ωS) ≈ ωS

ωS − ω1

(
J0(ωS |x|)2+J1(ωS |x|)2

)
− ω1

ωS − ω1

(
J0(ω1|x|)2+J1(ω1|x|)2

)
+

∫ ωS

ω1

J1(ω|x|)2dω

and

Ψ(z− xm;ω1, ωS) ≈
∫ ωS

ω1

Ξ(z− xm;ω)dω

= 4
∞∑

n=1

in

n
sin

(
n(θN − θ1)

2

)
cos

(
n(θN + θ1 − 2φm)

2

) ∫ ωS

ω1

Jn(ω|z− xm|)dω.

Proof. Applying Theorem 3.3 and following an indefinite integral of the Bessel function (see [23])
∫

J0(x)2dx = x

(
J0(x)2 + J1(x)2

)
+

∫
J1(x)2dx,

we can immediate obtain desired result.

Remark 3.5. Theorems 3.3 and 3.4 tell us some properties that can be summarized as follows:

(S1) In the structure of MUSIC-type imaging function, the terms J0(ω|z− xm|) and Φ(z− xm; ω1, ωS)
contribute to the imaging performance. In contrast, the terms Ξ(z; ω) and Ψ(z−xm; ω1, ωS) disturb
the imaging performance.

(S2) On the basis of the asymptotic property of the Bessel function (8), a good result can be obtained via
MUSIC algorithm when ω −→ +∞. However, this is an ideal condition.
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(S3) Since Φ(z−xm; ω1, ωS) oscillates less than J0(ω|z−xm|), it is expected that multi-frequency MUSIC
improves single-frequency one. However, if the range of the incident (and observation) directions
is narrow, then since θN − θ1 is small,

J0(ω|z− xm|) ¿ Ξ(z; ω)
θN − θ1

and Φ(z− xm;ω1, ωS) ¿ Ψ(z− xm;ω1, ωS)
θN − θ1

.

Hence, the results via IMUSIC(z; ω) and IMULTI(z;S) would be poor, i.e., there is no improvement.
This is the reason why one cannot obtain good results via single- and multi-frequency MUSIC
algorithms in limited-view problems. In contrast, if the range of the incident directions is sufficiently
wide, one can obtain good results via MUSIC algorithm and IMULTI(z;S) will improve IMUSIC(z;ω).

(S4) On the basis of Lemma 3.2, if we can control the range of the incident directions such that

sin
(

n(θN − θ1)
2

)
cos

(
n(θN + θ1 − 2φm)

2

)
= 0

then, since the disturbing terms are disappear, one can obtain a good result. However, this is only
the case θN − θ1 = 2π, i.e., full-view inverse problem because we have no a priori information of
thin inhomogeneities. Therefore, in the case of the limited-view inverse scattering problems, we
cannot expect a good result via MUSIC algorithm.

4. NUMERICAL RESULTS AND DISCUSSION

In order to support Theorems 3.3 and 3.4, we present some numerical examples. For this, we consider the
imaging of thin dielectric inhomogeneities Γj = {x + ηn(x) : x ∈ σj , − h ≤ η ≤ h} with two supporting
curves

σ1 =
{
[s, 0.2]T : −0.5 ≤ s ≤ 0.5

}

σ2 =

{[
s,

1
2

cos
sπ

2
+

1
5

sin
sπ

2
− 1

10
cos

3sπ

2

]T

: −1 ≤ s ≤ 1

}

with the same thickness h = 0.02. Permittivities of the background space and the thin inhomogeneity
are selected as ε0 = 1 and ε = 5, respectively, and permeability is µ0 = 1. Throughout this section, the
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Figure 2. Maps of IMUSIC(z; ω1) (top) and IMULTI(z; 10) (bottom) when the thin inhomogeneity is
Γ1.
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wavelengthes λs, s = 1, 2, . . . , S(= 10), satisfy λ1 > λ2 > . . . > λS and

λ1 = 0.5× length(σ1) = 0.5 and λS = 0.2× length(σ1) = 0.2.

In every results, the far-field pattern u∞(ϑj ,θl) computed by a second-kind integral equation introduced
in [14].

Figure 2 shows the maps of IMUSIC(z;ω1) with various ranges of incident directions when the
thin inhomogeneity is Γ1. This result shows that when the range of incident directions is narrow (see
Figure 2(a)), based on the observation (S3) of Remark 3.5, one cannot identify the true shape of Γ1.
In contrast, in Figure 2(b), although some blurring effect appeared in the neighborhood of Γ1, we can
recognize the approximate shape of Γ1 when θ0 = 0 and θN = π. Note that if θ1 = 0 and π ≤ θN ≤ 2π,
very good results appear.

Figure 3 shows the maps of IMUSIC(z;ω1) for Γ2. In contrast to the results shown in Figure 2, the
true shape of Γ2 can be obtained in the full-view configuration. Hence, we conclude that if one wants to
image a complex shaped target, the range of incident (and observation) directions must be sufficiently
wide as we observed in (S4) of Remark 3.5.
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Figure 3. Same as Figure 2 except the thin inhomogeneity is Γ2.

5. CONCLUSION

In this paper, we discovered the structure of the MUSIC-type imaging function of thin dielectric
inhomogeneity located in the two-dimensional homogeneous space in the limited-view inverse scattering
problems. On the basis of the relationship between the imaging function and the Bessel functions
of the integer order of the first kind, we identified certain properties of the MUSIC algorithm in the
limited-view inverse scattering problems.

In this paper, the imaging of thin dielectric inhomogeneity was considered. We believe that the
analysis could be extended for a purely magnetic contrast between the inclusions and the embedding
domain, and the combined cases. Furthermore, extension of the analysis to the imaging of a perfectly
conducting, arbitrary shaped crack is expected.

Note that topological derivative based non-iterative imaging algorithm has been developed but
considered only in full-aperture inverse scattering problems, refer to [2, 12, 13, 15, 17, 18]. Motivated
from this fact, an analysis of topological derivative imaging function in the limited-aperture problem
should be an interesting work.
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