Vol. 37
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-06-19
Complex HRRP Target Recognition Based on Phase and Amplitude Fusion Analysis
By
Progress In Electromagnetics Research M, Vol. 37, 63-72, 2014
Abstract
Due to the traditional recognition researches prevalently fastening on HRRP's amplitudes while almost completely neglecting the phases, this paper attempts to directly prove the discriminant availability of HRRP's phases via two proposed fusion recognition strategies. The first strategy includes three sub-processes, respectively, based on phase cosine, phase sine and their fusion. The second strategy also includes three sub-processes, respectively, based on phases, amplitudes and their fusion. Additionally, a trigonometric function couple (TFC) method is used to reduce the phase sensitivity. Several measured experimental results indicate as follows. Firstly, employing TFC can perform much better. Secondly, the two fusion recognition sub-processes apparently outperform the corresponding subprocesses constructing them. Finally, phase information usually has a better noise immunity compared with amplitude information, and fusing phase information into amplitudes may improve the traditional recognition performance. Therefore, the availabilities of HRRP's phases and the two fusion strategies have been experimentally proven.
Citation
Jian-Sheng Fu, Hui Zu, Zhi Qiao, and Shao-Fei Wang, "Complex HRRP Target Recognition Based on Phase and Amplitude Fusion Analysis," Progress In Electromagnetics Research M, Vol. 37, 63-72, 2014.
doi:10.2528/PIERM14042204
References

1. Xing, M. and B. Bao, "The properties of range profile of aircraft," Chin. J. Electron., Vol. 11, No. 1, 1-6, 2002.

2. Du, L., P. Wang, H. Liu, et al. "Bayesian spatiotemporal multitask learning for radar HRRP target recognition," IEEE Trans. Signal Process., Vol. 59, No. 7, 3182-3196, 2011.
doi:10.1109/TSP.2011.2141664

3. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

4. Shi, L., P. Wang, H. Liu, et al. "Radar HRRP statistical recognition with local factor analysis by automatic Bayesian Ying-Yang harmony learning," IEEE Trans. Signal Process., Vol. 59, No. 2, 610-617, 2011.
doi:10.1109/TSP.2010.2088391

5. Du, L., H. Liu, Z. Bao, et al. "A two-distribution compounded statistical model for radar HRRP target recognition," IEEE Trans. Signal Process., Vol. 54, No. 61, 2226-2238, 2006.

6. Du, L., H. Liu, Z. Bao, et al. "Radar automatic target recognition using complex high-resolution range profiles," IET Radar Sonar Navig., Vol. 1, No. 1, 18-26, 2007.
doi:10.1049/iet-rsn:20050119

7. Liao, K. and W. Yang, "Extraction of radar target length based on high resolution range profile," Proc. --- Int. Conf. Electr. Control Eng., ICECE, 956-959, Jun. 26-28, 2010.

8. Astola, J. T., P. A. Molchanov, K. O. Eqiazarian, et al. "Reduction of aspect dependent speckle °uctuations in high-resolution radar range profiles," Telecommun. Radio Eng., Vol. 69, No. 8, 687-698, 2010.
doi:10.1615/TelecomRadEng.v69.i8.40

9. Zhang, R., X. Wei, X. Li, et al. "Analysis about the speckle of radar high resolution range profile," Sci. China Technol. Sci., Vol. 54, No. 1, 226-236, 2011.
doi:10.1007/s11431-010-4207-x

10. Fu, J.-S. and W.-L. Yang, "KFD-based multiclass synthetical discriminant analysis for radar HRRP recognition," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 169-178, 2012.
doi:10.1163/156939312800030947

11. Zhou, D., X. Shen, and W. Yang, "Radar target recognition based on fuzzy optimal transformation using high-resolution range profile," Pattern Recogn. Lett., Vol. 34, No. 3, 256-264, 2013.
doi:10.1016/j.patrec.2012.10.010

12. Cheng, B., H. Liu, J. Chai, et al. "Large margin feature weighting method via linear programming," IEEE Trans. Knowl. Data. Eng., Vol. 21, No. 10, 1475-1488, 2009.
doi:10.1109/TKDE.2008.238

13. Zhou, D., X. Shen, G. Wang, et al. "Orthogonal kernel projecting plane for radar HRRP recognition," Neurocomputing, Vol. 106, 61-67, 2013.
doi:10.1016/j.neucom.2012.10.016

14. Fu, J.-S., K. liao, and W.-L. Yang, "Radar HRRP target recognition using multi-KFD-based LDA algorithm," Progress In Electromagnetics Research C, Vol. 34, 15-26, 2012.
doi:10.2528/PIERC11121804

15. Lee, S.-J., I.-S. Choil, B. Cho, E. J. Rothwell, and A. K. Temme, "Performance enhancement of target recognition using feature vector fusion of monostatic and bistatic radar," Progress In Electromagnetics Research, Vol. 144, No. 10, 291-302, 2014.
doi:10.2528/PIER13103101

16. Zhang, L. and W.-D. Zhou, "Sparse ensembles using weighted combination methods based on linear programming," Pattern Recogn., Vol. 44, No. 1, 97-106, 2011.
doi:10.1016/j.patcog.2010.07.021

17. Fu, J., X. Deng, and W. Yang, "Radar HRRP recognition based on discriminant information analysis," WSEAS Trans. Inf. Sci. Appl., Vol. 8, No. 4, 185-201, 2011.

18. Du, L., H. Liu, P. Wang, et al. "Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size," IEEE Trans. Signal Process., Vol. 60, No. 7, 3546-3559, 2012.
doi:10.1109/TSP.2012.2191965

19. Swets, D. and J. Weng, "Using discriminant eigenfeatures for image retrieval," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, No. 2, 831-836, 1996.
doi:10.1109/34.531802

20. Gou, J., L. Du, and T. Xiong, "Weighted k-nearest centroid neighbor classification," J. Comput. Inf. Syst., Vol. 8, No. 2, 851-860, 2012.