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Complex HRRP Target Recognition Based on Phase and Amplitude
Fusion Analysis
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Abstract—Due to the traditional recognition researches prevalently focusing on HRRP’s amplitudes
while almost completely neglecting the phases, this paper attempts to directly prove the discriminant
availability of HRRP’s phases via two proposed fusion recognition strategies. The first strategy includes
three sub-processes, respectively, based on phase cosine, phase sine and their fusion. The second
strategy also includes three sub-processes, respectively, based on phases, amplitudes and their fusion.
Additionally, a trigonometric function couple (TFC) method is used to reduce the phase sensitivity.
Several measured experimental results indicate as follows. Firstly, employing TFC can perform much
better. Secondly, the two fusion recognition sub-processes apparently outperform the corresponding
sub-processes constructing them. Finally, phase information usually has a better noise immunity than
amplitude information, and fusing phase information into amplitudes may improve the traditional
recognition performance. Therefore, the availabilities of HRRP’s phases and the two fusion strategies
have been experimentally proven.

1. INTRODUCTION

An original high resolution range profile (HRRP), a complex vector, is composed of amplitude and
phase information of coherent summations of the complex returns from target scatterers in each range
cell, which represents the projection of the complex returned echoes from the target scattering centers
onto the radar line-of-sight (LOS) [1, 2]. Among several kinds of the windband radar target signatures,
such as 2-D and 3-D radar target images [3], HRRP is a promising signature and more easy to be
acquired in actual application, but it is highly sensitive to target-aspect, time-shift and amplitude-scale
variations [4–6], so how to extract robust and effective feature from the raw signal becomes a key
problem in HRRP-based radar automatic target recognition (RATR). During the past decade, many
measured and simulated experimental results also confirmed that some physical structure information
naturally contained in complex HRRPs, such as target size [7], scatterer distribution [8, 9], amplitude
fluctuation [10–16], is very beneficial to HRRP-based RATR, and accordingly, a number of statistical
methods have been proposed for feature extraction and dimension reduction.

These statistical discriminant methods were generally employed to deal with HRRP’s amplitudes,
that is to say, their prevalent applications were designed to extract the discrimination information
only from real HRRPs rather than the complex ones [2, 10–16], thereby probably losing some valuable
discriminant information contained in the phases and potentially resulting in a dissatisfied recognition
performance sometimes [17]. Nevertheless, in addition to these traditional applications, there has been
little recognition work done via directly using the phase information of complex HRRPs due to two main
reasons. One reason is the sensitivity problem. Theoretically speaking, HRRP’s phases are so sensitive
to target-aspect, time-shift and amplitude-scale variations that the pure phase units can be considered
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containing little useful discriminant information, and therefore can be ignored in some sense [5],
but no experiment at present supports this opinion. Another reason is the computation problem.
Mathematically speaking, the discriminating process based on complex HRRPs usually consumes more
computation and storage resources than the real’s, so we ordinarily prefer real HRRPs because the huge
storage requirement and computation burden always appear in HRRP-based RATR [5, 18]. Despite the
two problems aforementioned summarily, Du et al. have indirectly proved the discriminant availability
of HRRP’s phases via comparing the recognition performance between the complex and real HRRPs [6].
However, the discriminant availability of HRRP’s phases still has not been directly tested by experiment
at present.

Motivated by the analysis above, the main intention of this paper is to directly prove the
discriminant availability of phase information contained in complex HRRPs. Due to the higher phase
sensitivity than the amplitude’s in target-aspect [5], a trigonometric function couple (TFC), i.e., the
cosine and sine functions, is employed to reduce its sensitivity and improve the recognition stability.
Consider that the fusion recognition techniques always appear in RATR [14, 15], two fusion recognition
strategies are also proposed in this paper, of which the first strategy is specially designed for phase
recognition while the second is based on HRRP’s phases and amplitudes. Additionally, in order to
clearly analyze the two proposed strategies, linear discriminant analysis (LDA) and 1-nearest neighbor
(1-NN) ruler are both employed in them to demonstrate the detailed processes [19, 20]. One view worth
pointing out is that this paper is mainly used to prove the discriminant availability of HRRP’s phases
via testing the recognition availabilities of the proposed strategies, so application of LDA and 1-NN has
little essential effect on the two strategies, that is to further say, many other similar methods can also
be applied to the two strategies to test the discriminant availability of HRRP’s phases.

The rest is organized as follows. In Section 2, we proceed to delve into the details of the first
fusion recognition strategy. In Section 3, the second fusion recognition strategy is detailed based on
HRRP’s phases and amplitudes. In Section 4, we apply the two strategies in the measured experiments
to evaluate the recognition performances. Finally, some conclusions are made in Section 5.

2. THE FIRST FUSION RECOGNITION STRATEGY BASED ON HRRP’S PHASES

Throughout this paper, consider a set of M complex HRRPs {X|xi, i = 1, 2, . . . , M} defined on a
2n-dimensional complex space F2n, containing g classes with each class consisting of mξ (ξ = 1, 2, . . . , g)
training samples. Let {Xξ|xξ,j , j = 1, 2, . . . , mξ}, {Aξ|aξ,j , j = 1, 2, . . . , mξ} and {Θξ|θξ,j , j =
1, 2, . . . , mξ}, respectively, denote the complex, amplitude and phase subsets of Class ξ, here the
column vectors xξ,j , aξ,j and θξ,j are given by





xξ,j = [xξ,j,1, xξ,j,2, . . . , xξ,j,2n]T

=
[
aξ,j,1e

i∗θξ,j,1 , aξ,j,2e
i∗θξ,j,2 , . . . , aξ,j,2nei∗θξ,j,2n

]T

aξ,j = [aξ,j,1, aξ,j,2, . . . , aξ,j,2n]T

θξ,j = [θξ,j,1, θξ,j,2, . . . , θξ,j,2n]T

(
j = 1, 2, . . . ,mξ

ξ = 1, 2, . . . , g

)
, (1)

where the mathematical notation i is defined as the imaginary symbol throughout this paper, thus we
have M =

∑g
ξ=1 mξ, X = [X1, X2, . . . , Xg], A = [A1, A2, . . . , Ag] and Θ = [Θ1, Θ2, . . . , Θg].

Let’s analyze the formation mechanism of HRRP [1, 5, 6]. Supposing that there exists a radar target
denoted by ℘, its HRRP can be considered as a discrete sampling sequence of the target electromagnetic
echo φ(f), which can be approximated as a scatterer model of the radar center frequency f , that is,

φ (f) =
Q∑

ξ=1

αξ exp (i ∗ 2πfτξ), (2)

where Q denotes ℘’s scatterer number, and accordingly, αξ and τξ, respectively, denote the scattering
intensity and arrival time of the ξth scatterer. Then the HRRP x can be constructed by x =



Progress In Electromagnetics Research M, Vol. 37, 2014 65

[x1, x2, . . . , xP ]T , here xκ is given by

xκ = φκ(f) =
Qκ∑

η=1

ακ,η exp (i ∗ 2πfτκ,η) = ακ exp (i ∗ θκ) (κ = 1, 2, . . . P ) , (3)

where P denotes ℘’s range resolution cell (RRC) number, and Qκ, ακ and θκ, respectively, denote the
scatterer number, scattering intensity and angle in the κth RRC. Accordingly, ακ,ξ and τκ,ξ, respectively,
denote the scattering intensity and arrival time of the ηth scatterer in the κth RRC.

Generally speaking, the amplitude and phase of target scatterer can both reflect the target physical
architecture in electromagnetic form, so HRRP’s amplitude and phase both contain some valuable
information for recognition. In term of physical significance within a certain RRC as demonstrated
by (3), HRRP’s amplitude can be considered as the energy accumulation in space axis while phase is
the momentum accumulation in time axis. That is to say, their physical significances are very different,
so the discriminant information contained in them is also different. Only using amplitude information
for recognition is equivalently based on the mathematical assumption that all phases are strictly set to a
single value, while actually the phases may contain some target architecture information which does not
exist in the amplitudes. Due to the higher aspect-sensitivity of phase than the amplitude’s [1, 5, 6], the
recognition performance of phase is acceptably inferior to the amplitude’s, but fusing phase information
into amplitudes may improve the recognition performance more or less. Furthermore, in terms of
electromagnetic wave, its energy can be easily interfered by mutable electromagnetic environment while
its frequency always performs relatively stable in many mediums, and as a result, phase information
may have a better noise immunity than amplitude information.

2.1. The Pretreatment of HRRP’s Phases

Different from Du’s revealing the discriminant availability of HRRP’s phases indirectly [6], this paper
attempts to directly dispose the pure phase information. Enlightened by HRRP’s expression formula,

xξ,j,i = aξ,j,i (cos (θξ,j,i) + i ∗ sin (θξ,j,i)) (i = 1, 2, . . . , 2n; j = 1, 2, . . . , mξ; ξ = 1, 2, . . . , g) , (4)
we define a TFC method in this paper to directly deal with the phases by{

Cξ = (cos (θξ,j,i))(i=1,2,...,2n; j=1,2,...,mξ) = cos (Θξ)
Sξ = (sin (θξ,j,i))(i=1,2,...,2n; j=1,2,...,mξ) = sin (Θξ)

(ξ = 1, 2, . . . , g), (5)

where the matrices Cξ and Sξ, respectively, denote the cosine and sine results of the matrix Θ̄ξ.
Accordingly, the cosine training space C and the sine training space S are constructed by

C = [C1, C2, . . . ,Cg] and S = [S1, S2, . . . ,Sg] . (6)
Let’s consider TFC’s effect on phase-preprocessing. According to the theoretical analysis provided

above and in [1–6], HRRP’s phases are useful for recognition. But in actual extraction by inverse
trigonometric transform, the radian values of all elements in Θ are mathematically limited to the
fluctuation range [−π, π]. Through TFC, the fluctuation range of HRRP’s phases is comparatively
changed from the actual [−π, π] to the virtual [−π/2, π/2]. As a result, it equivalently truncates
the fluctuation amplitude of Θ by two times, so it can reduce the phase sensitivity in some sense.
Furthermore, as a nonlinear mapping, TFC may decompose more information beneficial to recognition.
Although TFC may reduce the phase sensitivity and improve the recognition stability via enriching the
fluctuation characteristics of HRRP’s phases, one view worth pointing out is that it is at the expense
of some discriminant information contained in HRRP’s phases [17]. Note that the main intention of
this paper is to directly prove the discriminant availability of HRRP’s phases, and TFC is rationally
accepted even though there really exists some useful discriminant information probably losing.

Due to the high time-shift and amplitude-scale sensitivity of HRRP [1–6], some methods should be
adopted to pretreat the trigonometric matrixes Cξ and Sξ. In this paper, a simple method mentioned
in [2] is specially suggested for the following pretreatment. Let’s suppose that, with the help of this
method, we have obtained the preprocessed matrixes C̄ξ and S̄ξ from Cξ and Sξ, respectively, then the
cosine training space C̄ and sine training space S̄ are arranged by

C̄ =
[
C̄1, C̄2, . . . , C̄g

]
and S̄ =

[
S̄1, S̄2, . . . , S̄g

]
. (7)
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2.2. The Recognition of HRRP’s Phases

Once acquiring the preprocessed matrixes C̄ and S̄ from HRRP’s phases, we proceed to delve into the
recognition details. Through the LDA algorithm, we obtain the feature projection subspaces (FPSs)
UC and US from the training spaces C̄ and S̄, respectively. Then the feature subspaces ¯̄Cξ and ¯̄Sξ of
Class ξ can be calculated by

¯̄Cξ =
((

C̄ξ

)T UC
)T

and ¯̄Sξ =
((

S̄ξ

)T US
)T

(ξ = 1, 2, . . . , g), (8)

where the matrixes ¯̄Cξ and ¯̄Sξ, respectively, denote the cosine and sine feature subspaces of Class ξ.
Similarly, the cosine feature space ¯̄C and sine training space ¯̄C can be constructed by

¯̄C =
[
¯̄C1,

¯̄C2, . . . ,
¯̄Cg

]
and ¯̄S =

[
¯̄S1,

¯̄S2, . . . ,
¯̄Sg

]
. (9)

Generally speaking, the main application of the feature subspaces ¯̄Cξ and ¯̄Sξ is for template-
matching, which is usually divided into three solving steps as follows. Firstly, given a test HRRP xΩ

and its phase vector θΩ, we can obtain its feature vectors ¯̄cΩ and ¯̄sΩ along with the solution process
above, where ¯̄cΩ and ¯̄sΩ, respectively, denote the cosine and sine features of the phase vector θΩ.
Secondly, under the 1-NN ruler, we can obtain its nearest Euclidean distances (NEDs) dΩC

ξ and dΩS
ξ ,

where the values dΩC
ξ and dΩS

ξ , respectively, denote the NED between ¯̄cΩ and ¯̄Cξ, and the NED between
¯̄sΩ and ¯̄Sξ. Finally, the test sample xΩ can be classified by

ΦΩC = arg min
ξ=1,2,...,g

dΩC
ξ and ΦΩS = arg min

ξ=1,2,...,g
dΩS

ξ , (10)

where the attribution ΦΩC denotes that xΩ belongs to Class ΦΩC under the phase cosine pattern, and
the attribution ΦΩS denotes that xΩ belongs to Class ΦΩS under the phase sine pattern.

Enlightened by the NED’s fusion technique in [10], we proceed to analyze the fusion recognition
problem in the first strategy. Supposing that the amplitudes of HRRPs have been all strictly set to 1,
and then compared with HRRP’s expression formula as given by (4), we can find that the phase cosine
space C can be considered as a real mapping space of TFC while S is imaginary. Accordingly, the value
dΩC

ξ is the NED measurement in the real space ¯̄Cξ while dΩS
ξ is calculated in the imaginary space ¯̄Sξ.

According to plural calculation theory, the two different NEDs can be fused by

dΩΘ
ξ =

∥∥dΩC
ξ + i ∗ dΩS

ξ

∥∥ =

√(
dΩC

ξ

)2
+

(
dΩS

ξ

)2
(ξ = 1, 2, . . . , g), (11)

where the value dΩΘ
ξ denotes the fusion NED between the test sample xΩ and Class ξ under the first

strategy. Then we can obtain its corresponding attribution ΦΩΘ under the 1-NN ruler.

3. THE SECOND FUSION RECOGNITION STRATEGY BASED ON HRRP’S
PHASES AND AMPLITUDES

Based on HRRP’s different sub-information units, i.e., phases and amplitudes, the proposed strategy is
divided into two sub-sections as follows.

3.1. The Recognition of HRRP’s Amplitudes

Obviously, HRRP’s amplitude subset is equivalent to real HRRPs [2]. Due to the massive recognition
researches focusing on real HRRPs during past years [10–16], the discriminant process of HRRP’s
amplitudes is moderately reduced as that. Firstly, through the preprocessed method offered in [2], we
obtain the training space Ā from the original space A. Secondly, with the help of LDA, we obtain the
FPS UA from the training space Ā. Finally, we obtain the feature subspace ¯̄Aξ of Class ξ by

¯̄Aξ =
((

Āξ

)T UA
)T

(ξ = 1, 2, . . . , g), (12)



Progress In Electromagnetics Research M, Vol. 37, 2014 67

and then arrange the feature space ¯̄A = [ ¯̄A1,
¯̄A2, . . . ,

¯̄Ag], where the matrix Āξ denotes the training
space of Class ξ. For the test sample xΩ and its original amplitude vector aΩ, we can similarly obtain
its amplitude feature vector ¯̄aΩ and attribution ΦΩA under the 1-NN ruler.

3.2. The Recognition of HRRP’s Phases and Amplitudes

Motivated by the double-layered feature extraction method provided in [14], we proceed to the second-
layered discriminant analysis. With respect to the feature spaces ¯̄Cξ, ¯̄Sξ and ¯̄Aξ obtained in front, even
though they can be structured as a training space for discriminant, their distributions are different in
terms of statistical scale, so some pretreatment must be adopted to normalize them. As the traditional
statistical measurement, standard deviation is suggested in this paper to normalize the feature spaces.
Let’s suppose that the values σC

ξ , σS
ξ and σA

ξ , respectively, denote the standard deviations of the feature
spaces ¯̄Cξ, ¯̄Sξ and ¯̄Aξ, then the overall standard deviations can be given by

σC =

√√√√
g∑

ξ=1

(
σC

ξ

)2/
g, σS =

√√√√
g∑

ξ=1

(
σS

ξ

)2/
g and σA =

√√√√
g∑

ξ=1

(
σA

ξ

)2/
g, (13)

where the values σC, σS and σA, respectively, denote the overall standard deviations of the feature
spaces ¯̄C, ¯̄S and ¯̄A. Accordingly, the normalized feature spaces are constructed by




¯̄Xξ =
[(

¯̄Cξ/σC
)T

,
(

¯̄Sξ/σS
)T

,
(

¯̄Aξ/σA
)T

]T

¯̄X =
[
¯̄X1,

¯̄X2, . . . ,
¯̄Xg

] (ξ = 1, 2, . . . , g), (14)

where matrix ¯̄Xξ denotes the second-layered training subspace of Class ξ, and matrix ¯̄X denotes the
total second-layered training space.

Once obtaining the training space ¯̄X, we apply it to calculate the FPS ¯̄U through directly employing
the LDA algorithm. Then the feature subspace Yξ of Class ξ is given by

Yξ =
((

¯̄Xξ

)T ¯̄U
)T

(ξ = 1, 2, . . . , g). (15)

Let’s analyze the logical relations among the FPSs UC, US, UA and ¯̄U. Evidently, the FPSs UC,
US and UA are used to extract the feature subspaces ¯̄C, ¯̄S and ¯̄A from the training spaces C̄, S̄ and
Ā, respectively, while the normalizations of the feature subspaces ¯̄C, ¯̄S and ¯̄A are synthetically used to
obtain the FPS ¯̄U by the LDA algorithm. Similar to the analysis in [14], we can construct a projection
matrix to synthesize these four FPSs as a global FPS. Supposing that the dimensions of the FPSs UC,
US and UA, respectively, are n×NC, n×NS and n×NA, then the global FPS U is given by

U =



UC/σC 0n,NS 0n,NA

0n,NC US/σS 0n,NA

0n,NC 0n,NS UA/σA


 ¯̄U, (16)

where the zero sub-space 0i,j is defined as a i × j matrix with all elements strictly setting to 0.
Accordingly, the training subspace X̄ξ of Class ξ is constructed by X̄ξ = [(C̄ξ)T , (S̄ξ)T , (Āξ)T ]T ,
and then the feature subspace Yξ can be equivalently obtained by

Yξ =
((

X̄ξ

)T U
)T

(ξ = 1, 2, . . . , g). (17)

Obviously, the training subspace X̄ξ contains not only the phase information C̄ξ and S̄ξ, but also
the phase information Āξ. As a comprehensive mapping, the FPS U fuses the phase and amplitude
information simultaneously.

For the test sample xΩ, we can similarly construct its first-layered test vector x̄Ω along with the
corresponding steps, and accordingly, its feature vector yΩ can be obtained by yΩ = ((x̄Ω)TU)T . Then
under the 1-NN ruler, we can easily obtain its attribution ΦΩ.
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4. EXPERIMENTS AND ANALYSES

The original HRRP data used to evaluate the recognition performance was measured by a C-band ISAR
radar with bandwidth 400 MHz [4–7, 10–14], including the 1st, 2nd, 4th and 7th segments of An-16, the
1st, 2nd, 4th and 7th segments of Jiang (Cessna Citation S/II), and the 1st, 2nd, 4th and 5th segments of
Yak-42, with each segment containing 260 complex HRRPs. In order to evaluate the proposed strategies,
two experimental datasets are designed as follows. One dataset is labeled by Dataset I, including the
4th segment of An-16, 7th segment of Jiang, and 1st segment of Yak-42, with each segment providing
240 HRRPs, so Dataset I contains 720 HRRPs in total. Another dataset is labeled by Dataset II,
including four segments of each airplane, with each airplane providing 1000 HRRPs, so Dataset II
contains 3000 HRRPs in total. Obviously, Dataset I has a better data continuity, while Dataset II
contains more information of target-aspect and amplitude-scale variations.

In accordance with the front analysis in Sections 2 and 3, this paper provides five recognition sub-
processes in the two proposed strategies. Via classifying the test sample xΩ by the five sub-processes, we
can obtain five different attributions, i.e., ΦΩC, ΦΩS, ΦΩΘ, ΦΩA and ΦΩ, and accordingly, the recognition
sub-processes are labeled by “phase cosine”, “phase sine”, “phase fusion”, “amplitude” and “global
fusion” respectively in the experiments. Additionally, similar to the “amplitude” recognition sub-
process, the HRRP’s phase vectors are also used for a performance comparison, and the corresponding
recognition sub-process is labeled by “phase” in the experiments.

4.1. The Experiment on Feature Spaces

According to the description in Section 2.2, there exist some feature spaces used for template-matching.
Actually, the feature spaces can directly affect the recognition results. In order to evaluate the feature
performances of the “global fusion”, “amplitude”, “phase cosine” and “phase sine” sub-process, Dataset
I is recommended in the experiment, and accordingly, the training feature spaces are depicted in Figure 1.
For a comparison support, the correct recognition rates (CRRs) based on Dataset I are also listed in
Table 1. Based on the experimental results, some analyses are given as follows.

Firstly, the feature discriminant degrees in Figure 1 are labeled from high to low by “global fusion”,
“amplitude”, “phase sine” and “phase cosine”, among which the “phase sine” and “phase cosine” sub-
processes have a similar discriminant degree and actually difficult to be distinguished. Compared with
the relative CRRs offered in Table 1, we can find that a better training discriminant degree always
obtains a higher CRR.

Secondly, in terms of the sample concentration ratios, “amplitude” apparently outperforms “phase
cosine” and “phase sine”, and as their fusion, “global fusion” performs the best. Furthermore, a better
sample concentration ratio always means a higher CRR of this target. For example, as shown in
Figure 1(b), the sample concentration ratios of three airplanes are labeled from high to low by Jiang,
Yak-24 and An-26, and accordingly, their CRRs are also the same sequence as shown in Table 1.

(a) (b) (c) (d)

Figure 1. Training feature distributions in different recognition sub-processes based on Dataset I at
sampling interval 2. (a) In “global fusion” recognition sub-process. (b) In “amplitude” recognition
sub-process. (c) In “phase cosine” recognition sub-process. (d) In “phase sine” recognition sub-process.
(“O”: An-26, “∗”: Jiang, “∇”: Yak-42.).
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Table 1. Each target’s CRRs (%) by six recognition sub-processes.

fusion strategy
recognition experiment on Dataset I at interval 2 experiment on Dataset II at interval 4

sub-process An-16 Jiang Yak-24 average An-16 Jiang Yak-24 average

second
global fusion 83.33 95.00 83.33 87.22 74.93 85.20 83.20 81.11

amplitude 86.67 95.00 74.17 85.28 73.60 81.20 78.13 77.64

first

phase fusion 54.17 70.83 54.17 59.72 51.73 60.00 68.53 60.09

phase cosine 54.17 55.83 50.83 53.61 48.80 51.87 62.00 54.22

phase sine 49.17 65.00 57.50 57.22 47.07 56.40 64.53 56.00

other phase 42.50 41.67 43.33 42.50 48.80 50.27 48.00 47.69

4.2. The Experiment on Sampling Intervals

To evaluate the recognition performance on HRRP’s target-aspect variations, this experiment is designed
operating under different sampling intervals. Dataset II is suggested in the experiment, among which
the training set is selected at interval k, and the rest is used as the test set, here k = 2, 3, . . . , 15.
Through altering the interval k, we can change the target-aspect differences between the training set
and the test set, and accordingly, obtain the CRRs of the six recognition sub-processes, as depicted in
Figure 2. Then some analyses are given as follows.

Firstly, let’s consider the adverse influence of target-aspect sensitivity in the experiment. Due to
the high target-aspect sensitivity of HRRPs, all the average CRR curves in Figure 2 show a downward
trend along with the sampling interval increasing. Although decreasing the sampling interval may
improve the recognition performance, it may also increase the storage requirement and computation
burden synchronously. Actually, it is a dilemma problem in HRRP-based RATR.

Secondly, let’s analyze the experimental performance of HRRP’s phases. As described above, there
are four recognition sub-processes based on pure phase information, among which the “phase”, “phase
sine” and “phase sine” sub-processes are selected for analysis. From Figure 2 we can find that the
average CRRs of “phase cosine” and “phase sine” are both evidently higher than that of “phase”, thus
the availability of the TFC method has been tested. Furthermore, the average CRRs of “phase” are
much higher than the blind recognition rate 33.33% at all sampling interval points, so HRRP’s phases
must contain some useful discriminant information.

Thirdly, let’s analyze the experimental performance of the first strategy. From Figure 2 we can find
that the average CRRs of “phase fusion” are apparently higher than those of “phase cosine” and “phase
sine” at all sampling interval points, while the CRR curve of “phase cosine” is interlaced with that of

Figure 2. Average CRRs versus sampling interval number based on Dataset II.
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“phase sine”. This phenomenon indicates that “phase cosine” and “phase sine” are complementary in
some sense and can be efficiently fused. As a result, the recognition availability of the first strategy has
been experimentally proven.

Finally, let’s analyze the experimental performance of the second strategy. From Figure 2 we can
find that although the average CRRs of “phase fusion” are significantly lower than the corresponding
CRRs of “amplitude” due to the higher phase sensitivity than the amplitude’s in target-aspect, “global
fusion” generally outperforms “phase fusion” and “amplitude”, and the CRR differences between them
are apparent at most sampling interval points but slightly obscure at another several points. One
opinion worth pointing out is that since fusing phase and amplitude information can improve overall
recognition performance, phases must contain some useful discriminant information which does not exist
in amplitudes. Therefore, the availability of the second strategy has been experimentally proven.

4.3. The Experiments on Noise Disturbances

In order to obtain a general recognition performance of noise disturbance, a series of simulated white
noises are added to the inphase and quadrature components of Dataset I and Dataset II [2], with each
signal noise ratio (SNR) repeating 100 times to obtain the average, as shown in Figure 3. Meanwhile,
the CRRs of the three measured airplanes under the noiseless circumstance are listed in Table 1. Taking
into account actual application, the noise disturbance analyses are mainly focused on the SNR sensitive
area between 10 and 30 dB [18]. Then some analyses are given as follows.

Firstly, let’s consider the general effect of noise disturbance in the two experiments. Although
the experimental databases are different, the recognition results are similar, as shown in Figures 3(a)
and (b). With the SNR increasing, all the average CRRs increase accordingly. When the SNR surpasses
30 dB, compared with the relative CRRs in Table 1, we can find that the noise disturbance makes a
slight impact on the recognition results, and all the average CRRs keep a relatively stable condition.
When the SNR varies from 30 dB to 20 dB, the average CRR curves of “global fusion” and “amplitude”
drop significantly, while the other CRR curves still keep relatively stable. When the SNR varies from
20 dB to 10 dB, all the average CRRs drop sharply. When the SNR varies from 10 to 5 dB, all the
average CRRs keep a downward trend in a low recognition rate zone. Most attentively, in terms of
noise immunity, the phase information performs much better than the amplitude information in the two

(a) (b)

Figure 3. Average CRRs versus SNR. (a) Average CRRs varying with SNR in the experiment based
on Dataset I at sampling interval 2. (b) Average CRRs varying with SNR in the experiment based on
Dataset II at sampling interval 4.
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experiments, which experimentally confirms the result of theoretical analysis in Section 2.
Secondly, let’s analyze the experimental performance of HRRP’s phases. From Figure 3 we can find

that the average CRRs of “phase cosine” and “phase sine” are both higher than that of “phase” at almost
all SNR points, thus the availability of TFC has been tested. Furthermore, with the SNR decreasing,
the average CRRs of “phase cosine”, “phase sine” and “phase” also decrease. When the SNR arrives
at 5 dB, their CRRs are all close to the blind recognition rate 33.33%. This metabolic phenomenon
evidently indicates that HRRP’s phases must contain some useful discriminant information.

Thirdly, let’s analyze the experimental performance of the first strategy. From Figure 3 we can find
that as the fusion of “phase cosine” and “phase sine”, the “phase fusion” sub-process outperforms them
almost at all SNR points, especially in the SNR region between 10 and 40 dB. Thus the recognition
availability of the proposed strategy has been experimentally proven.

Finally, let’s analyze the experimental performance of the second strategy. In both experiments,
when the SNR surpasses 15 dB, the average CRR of “global fusion” is apparently higher than those of
“phase fusion” and “amplitude”. With respect to the average CRRs in Figure 3(a), when the SNR is less
than 15 dB, “global fusion” is superior to “amplitude” while inferior to “phase fusion”. Also a similar
performance can be found in Figure 3(b). Here a simple view is provided to explain this phenomenon as
that in terms of noise immunity, the traditional methods applied in the second strategy can outperform
the corresponding applications only using the amplitudes.

5. CONCLUSIONS

Generally, an original HRRP contains both amplitudes and phases, but the traditional recognition
researches prevalently focus on the amplitudes while almost completely neglect the phases. To directly
demonstrate the discriminant availability of HRRP’s phases, two fusion recognition strategies are
proposed as follows. The first strategy includes three recognition sub-processes, respectively, based
on phase cosine, phase sine and their fusion. The second strategy also includes three recognition
sub-processes, respectively, based on phases, amplitudes and their fusion. Additionally, a TFC phase-
pretreated method is used in the first strategy to reduce the phase sensitivity. In terms of recognition
performance on feature space, aspect-sensitivity and noise immunity, experimental results on the
measured HRRP databases indicate as follows. Firstly, with respect to the first strategy, the recognition
sub-processes applying the TFC method are apparently superior to that directly using the phases, and
the sub-process fusing the phase cosine and sine information performs the best. Secondly, with respect
to the second strategy, the recognition sub-process on phases performs a better noise immunity, but a
lower CRR than that on amplitudes, and the sub-process fusing the phase and amplitude information
performs the best. Finally, the phases contain some useful discriminant information which does not exist
in amplitudes, and fusing the phase information into amplitudes can improve the traditional recognition
on HRRP’s amplitudes. Therefore, the availabilities of HRRP’s phases and the two fusion strategies
have been experimentally proven.
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