Vol. 146
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-06-11
Miniaturized Low Frequency Platform Tolerant Antenna
By
Progress In Electromagnetics Research, Vol. 146, 195-207, 2014
Abstract
A miniature platform tolerant antenna is presented which is suitable for low frequency applications. A Split Ring Resonator (SRR) antenna loaded with lumped capacitances is proposed. The antenna is compact, low profile and easy to fabricate. It has a maximum dimension of λ/9 and -10 dB bandwidth of 1%. Miniaturized artificial magnetic conductor surfaces (AMCs) are designed using capacitance loaded metal patches with individual elements measuring just λ/70. Placing the SRR above the AMC improves the bandwidth to between 1.5 and 3.5% dependent on the overall size of the AMC and produces a platform tolerant antenna measuring 0.11λ×0.17λ×0.019λ. The performance of the antenna over an AMC with and without vias is studied and discussed. The AMC mounted antenna's performance in free space and over a ground plane is also compared.
Citation
Shaozhen Zhu, Daniel Graham, Kenneth Lee Ford, Alan Tennant, and Richard J. Langley, "Miniaturized Low Frequency Platform Tolerant Antenna," Progress In Electromagnetics Research, Vol. 146, 195-207, 2014.
doi:10.2528/PIER14040305
References

1. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, 1163-1175, Dec. 1948.

2. Harrington, R. F., "Effect of antenna size on gain, bandwidth, and efficiency," J. Res. National Bureau Standards --- D. Radio Propagation, Vol. 64D, No. 1, Jan. 1960.

3. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 672-676, May 1996.

4. Psychoudakis, D., J. L. Volakis, Z. N. Wing, S. K. Pillai, and J. W. Halloran, "Enhancing UHF antenna functionality through dielectric inclusions and texturization," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 317-329, Feb. 2006.

5. Lee, M., B. A. Kramer, C. Chen, and J. L. Volakis, "Distributed lumped loads and lossy transmission line model for wideband spiral antenna miniaturization and characterization," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 10, 2671-2678, Oct. 2007.

6. Chi, P., R.Waterhouse, and T. Itoh, "Antenna miniaturization using slow wave enhancement factor from loaded transmission line," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 48-57, Jan. 2011.

7. Azadegan, R. and K. Sarabandi, "Bandwidth enhancement of miniaturized slot antennas using folded, complementary, and self-complementary realizations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, 2435-2444, Sep. 2007.

8. Erentok, A. and R. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 691-707, Mar. 2008.

9. Jin, P. and R. Ziolkowski, "Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 318-327, Feb. 2010.

10. Ziolkowski, R., "Efficient electrically small antenna facilitated by a near-field resonant parasitic," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 581-584, 2008.

11. Bilotti, F., A. Alu, and L. Vegni, "Design of miniaturized metamaterial patch antennas with μ-negative loading," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1640-1647, Jun. 2008.

12. Qureshi, F., M. Antoniades, and G. V. Eleftheriades, "A compact and low-profile metamaterial ring antenna with vertical polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 333-336, 2005.

13. Liu, Q., P. S. Hall, and A. L. Borja, "Efficiency of electrically small dipole antennas loaded with left-handed transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3009-3017, Oct. 2009.

14. Lai, A. and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, 34-50, Sep. 2004.

15. Caloz, C., T. Itoh, and A. Rennings, "CRLH metamaterial leaky-wave and resonant antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 25-38, Oct. 2008.

16. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.

17. Folayan, O. and R. J. Langley, "Wideband reduced size electromagnetic bandgap structure," IET Electronics Letters, Vol. 41, 1099-1100, Sep. 2005.

18. Foroozesh, A. and L. Shafai, "Investigation into the application of AMCs to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 4-20, Jan. 2011.

19. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate," EEE Antennas and Wireless Propagation Letters, Vol. 12, 76-79, 2013.

20. Liu, H., K. L. Ford, and R. J. Langley, "Miniaturised artificial magnetic conductor design using lumped reactive components," IET Electronics Letters, Vol. 45, No. 6, 294-295, 2009.

21. Liu, H., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2732-2738, Sep. 2009.

22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Technology, Vol. 47, No. 11, 2075-2084, Nov. 1999.

23. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple SRRs for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2258-2267, Aug. 2007.

24. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marques, "Split-ring resonator-based left-handed coplanar waveguide," Applied Physics Letters, Vol. 83, No. 22, Dec. 1, 2003.

25. Costa, F., O. Luukkonen, C. R. Simovski, A. Monorchio, S. A. Tretyakov, and P. M. de Maagt, "TE surface wave resonances on high impedance surface based antennas: Analysis and modeling," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3588-3596, Oct. 2011.

26. Zhu, N. and R. Ziolkowski, "Active metamaterial-inspired broad-bandwidth, efficient, electrically small antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1582-1585, 2011.

27. Ziolkowski, R., P. Jin, J. A. Nielsen, M. H. Tanielian, and C. L. Holloway, "Experimental verification of Z antennas at UHF frequencies," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1329-1333, 2009.

28. Zhu, N. and R. Ziolkowski, "Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna," Applied Physics Letters, Vol. 101, No. 2, 24107-24110, Jul. 2012.

29. Jin, P. and R. Ziolkowski, "Low-Q, electrically small, e±cient near-field resonant parasitic antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2548-2563, Sep. 2009.

30. Vasundara, V. V., H. Wang, I. K. Kim, and S. Weiss, "SRR-loaded small dipole antenna with electromagnetic bandgap ground plane," IEEE International Symposium on Antennas and Propagation 2011, 1040-1043, Jul. 2011.

31. Best, S. R., "The radiation properties of electrically small folded helix antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 953-960, Apr. 2004.

32. Johnston, R. H. and J. G. McRory, "An improved small antenna radiation-efficiency measurement method," IEEE Antenna and Propagation Magazine, Vol. 40, No. 5, 40-48, Oct. 1998.