Vol. 145
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-04-03
Channel Characterization and Finite-State Markov Channel Modeling for Time-Varying Plasma Sheath Surrounding Hypersonic Vehicles
By
Progress In Electromagnetics Research, Vol. 145, 299-308, 2014
Abstract
Effects on the communication signals caused by the time-varying plasma sheath surrounding hypersonic vehicles are investigated. Using computational fluid dynamics (CFD) technique, Demetriades's plasma turbulence model and finite-difference time-domain (FDTD) algorithm, amplitude variation and phase fluctuation induced by plasma electron density turbulence are obtained, and their statistical properties are analyzed and characterized. Furthermore, a finite-state Markov channel (FSMC) model is proposed, to represent the dynamical effects on electromagnetic wave propagation through plasma sheath. With high accuracy and greatly reduced complexity, the FMSC model could be very useful to develop novel communication techniques for alleviating the radio blackout problem.
Citation
Guolong He, Yafeng Zhan, Ning Ge, Yukui Pei, Bin Wu, and Yuan Zhao, "Channel Characterization and Finite-State Markov Channel Modeling for Time-Varying Plasma Sheath Surrounding Hypersonic Vehicles," Progress In Electromagnetics Research, Vol. 145, 299-308, 2014.
doi:10.2528/PIER14031104
References

1. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328

2. Akey, N. D., "Overview of RAM reentry measurements program," The Entry Plasma Sheath and Its E®ects on Space Vehicle Electromagnetic Systems, 19-31, 1970.

3. Hartunian, R. A., G. E. Stewart, S. D. Fergason, T. J. Curtiss, and R. W. Seibold, "Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles,", Contractor Rep. ATR-2007(5309)-1, Aerospace Corporation, CA, 2007.

4. Gilllman, E. D., J. E. Foster, and I. M. Blankson, "Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation,", NASA/TM-2010-216220, NASA, Washington, DC, 2010.

5. Morabito, D. D., "The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres," IPN Progress Report 42-150, 1-16, Aug. 2002.

6. Liu, S., Z. Tao, M. Liu, and W. Hong, "WKB and FDTD analysis of Terahertz band electromagnetic characteristics of target coated with unmagnetized plasma," Journal of Systems Engineering and Electronics, Vol. 19, No. 1, 1520, 2008.

7. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetic Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

8. Shi, L., B. W. Bai, Y. M. Liu, and X. P. Li, "Navigation antenna performance degradation caused by plasma sheath," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 4, 518-528, 2013.
doi:10.1080/09205071.2013.755110

9. Zhao, L., B. W. Bai, W. M. Bao, and X. P. Li, "Effects of reentry plasma sheath on GPS patch antenna polarization property," International Journal of Antennas and Propagation, Article ID 823626, 2013.

10. Liu, J. F., X. L. Xi, G. B. Wan, and L. L. Wang, "Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 852-855, 2011.
doi:10.1109/TPS.2010.2098890

11. Ohler, S. G., B. E. Gilchrist, and . D. Gallimore, "Electromagnetic signal modification in a localized high-speed plasma °ow: Simulations and experimental validation of a stationary plasma thruster," IEEE Transactions on Plasma Science, Vol. 27, No. 2, 587-594, 1999.
doi:10.1109/27.772290

12. Gao, P., X. P. Li, Y. M. Liu, M. Yang, and J. Li, "Plasma sheath phase fluctuation and its effect on GPS navigation," 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), 579-582, Xi'an, China, 2012.
doi:10.1109/ISAPE.2012.6408837

13. Yang, M., X. P. Li, Y. M. Liu, L. Shi, and X. L. Wang, "Characteristic of time-varying plasma sheath channel," 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), 575-578, Xi'an, China, 2012.
doi:10.1109/ISAPE.2012.6408836

14. osyula, E. and W. Bailey, "Governing equations for weakly ionized plasma fields of aerospace vehicles," Journal of Spacecraft and Rockets, Vol. 40, No. 6, 845-857, 2003.
doi:10.2514/1.10800

15. COESA "U.S. Standard Atmosphere,", U.S. Government Printing O±ce, Washington, DC, 1976.

16. Kistler, A. L., "Fluctuation measurements in a supersonic turbulent boundary layer," Physics of Fluids, Vol. 2, 290-296, May 1959.
doi:10.1063/1.1705925

17. Fisher, M. C., "Boundary layer surveys on a nozzle wall at M = 20 including hot-wire fluctuation measurements," AIAA 3rd Fluid and Plasma Dynamics Conference, 1970.

18. Lin, T. C. and L. K. Sproul, "In°uence of reentry turbulent plasma fluctuation on EM wave propagation," Computers & Fluids, Vol. 35, 703-711, 2006.
doi:10.1016/j.compfluid.2006.01.009

19. Demrtriades, A. and R. Grabow, "Mean and °uctuating electron density in equilibrium turbulent boundary layers," AIAA, Vol. 9, 1533-1538, 1971.
doi:10.2514/3.49956

20. Lederman, A. J. and A. Demetriades, "Mean and fluctuating measurements in the hypersonic boundary layer over a cooled wall," Journal of Fluid Mechanics, Vol. 63, 121-144, 1974.
doi:10.1017/S0022112074001042

21. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation is isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.

22. Ta°ove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House Publishers, 2005.

23. Dong, X. T., W. Y. Yin, and Y. B. Gan, "Perfectly matched layer implementation using bilinear transform for microwave device applications," IEEE Transactions on Microwave Theory and Technique, Vol. 53, No. 10, 3098-3105, Oct. 2005.
doi:10.1109/TMTT.2005.855121

24. Wang, H. S. and N. Moyaeri, "Finite-state Markov channel --- A useful model for radio communication channels," IEEE Trans. Veh. Technol., Vol. 44, No. 2, 163-171, Feb. 1995.
doi:10.1109/25.350282

25. Sadeghi, P., R. A. Kennedy, P. Rapajic, and R. Shams, "Finite-state Markov modeling of fading channels --- A survey of principles and applications," IEEE Signal Process. Mag., Vol. 25, No. 5, 57-80, Sep. 2008.
doi:10.1109/MSP.2008.926683

26. Lin, H. P. and M. J. Tseng, "Two-layer multistate Markov model for modelling a 1.8 GHz narrow-band wireless propagation channel gin urban Taipei city," IEEE Trans. Veh. Technol., Vol. 54, No. 4, 435-446, Mar. 2005.
doi:10.1109/TVT.2004.841523

27. Morgadinho, S., R. F. S. Caldeirinha, M. O. Al-Nuaimi, et al. "Time-variant radio channel characterization and modelling of vegetation media at millimeter-wave frequency," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1557-1568, Mar. 2012.
doi:10.1109/TAP.2011.2180301