1. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328
2. Akey, N. D., "Overview of RAM reentry measurements program," The Entry Plasma Sheath and Its E®ects on Space Vehicle Electromagnetic Systems, 19-31, 1970.
3. Hartunian, R. A., G. E. Stewart, S. D. Fergason, T. J. Curtiss, and R. W. Seibold, "Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles,", Contractor Rep. ATR-2007(5309)-1, Aerospace Corporation, CA, 2007.
4. Gilllman, E. D., J. E. Foster, and I. M. Blankson, "Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation,", NASA/TM-2010-216220, NASA, Washington, DC, 2010.
5. Morabito, D. D., "The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres," IPN Progress Report 42-150, 1-16, Aug. 2002.
6. Liu, S., Z. Tao, M. Liu, and W. Hong, "WKB and FDTD analysis of Terahertz band electromagnetic characteristics of target coated with unmagnetized plasma," Journal of Systems Engineering and Electronics, Vol. 19, No. 1, 1520, 2008.
7. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetic Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201
8. Shi, L., B. W. Bai, Y. M. Liu, and X. P. Li, "Navigation antenna performance degradation caused by plasma sheath," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 4, 518-528, 2013.
doi:10.1080/09205071.2013.755110
9. Zhao, L., B. W. Bai, W. M. Bao, and X. P. Li, "Effects of reentry plasma sheath on GPS patch antenna polarization property," International Journal of Antennas and Propagation, Article ID 823626, 2013.
10. Liu, J. F., X. L. Xi, G. B. Wan, and L. L. Wang, "Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 852-855, 2011.
doi:10.1109/TPS.2010.2098890
11. Ohler, S. G., B. E. Gilchrist, and . D. Gallimore, "Electromagnetic signal modification in a localized high-speed plasma °ow: Simulations and experimental validation of a stationary plasma thruster," IEEE Transactions on Plasma Science, Vol. 27, No. 2, 587-594, 1999.
doi:10.1109/27.772290
12. Gao, P., X. P. Li, Y. M. Liu, M. Yang, and J. Li, "Plasma sheath phase fluctuation and its effect on GPS navigation," 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), 579-582, Xi'an, China, 2012.
doi:10.1109/ISAPE.2012.6408837
13. Yang, M., X. P. Li, Y. M. Liu, L. Shi, and X. L. Wang, "Characteristic of time-varying plasma sheath channel," 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), 575-578, Xi'an, China, 2012.
doi:10.1109/ISAPE.2012.6408836
14. osyula, E. and W. Bailey, "Governing equations for weakly ionized plasma fields of aerospace vehicles," Journal of Spacecraft and Rockets, Vol. 40, No. 6, 845-857, 2003.
doi:10.2514/1.10800
15. COESA "U.S. Standard Atmosphere,", U.S. Government Printing O±ce, Washington, DC, 1976.
16. Kistler, A. L., "Fluctuation measurements in a supersonic turbulent boundary layer," Physics of Fluids, Vol. 2, 290-296, May 1959.
doi:10.1063/1.1705925
17. Fisher, M. C., "Boundary layer surveys on a nozzle wall at M = 20 including hot-wire fluctuation measurements," AIAA 3rd Fluid and Plasma Dynamics Conference, 1970.
18. Lin, T. C. and L. K. Sproul, "In°uence of reentry turbulent plasma fluctuation on EM wave propagation," Computers & Fluids, Vol. 35, 703-711, 2006.
doi:10.1016/j.compfluid.2006.01.009
19. Demrtriades, A. and R. Grabow, "Mean and °uctuating electron density in equilibrium turbulent boundary layers," AIAA, Vol. 9, 1533-1538, 1971.
doi:10.2514/3.49956
20. Lederman, A. J. and A. Demetriades, "Mean and fluctuating measurements in the hypersonic boundary layer over a cooled wall," Journal of Fluid Mechanics, Vol. 63, 121-144, 1974.
doi:10.1017/S0022112074001042
21. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation is isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
22. Ta°ove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House Publishers, 2005.
23. Dong, X. T., W. Y. Yin, and Y. B. Gan, "Perfectly matched layer implementation using bilinear transform for microwave device applications," IEEE Transactions on Microwave Theory and Technique, Vol. 53, No. 10, 3098-3105, Oct. 2005.
doi:10.1109/TMTT.2005.855121
24. Wang, H. S. and N. Moyaeri, "Finite-state Markov channel --- A useful model for radio communication channels," IEEE Trans. Veh. Technol., Vol. 44, No. 2, 163-171, Feb. 1995.
doi:10.1109/25.350282
25. Sadeghi, P., R. A. Kennedy, P. Rapajic, and R. Shams, "Finite-state Markov modeling of fading channels --- A survey of principles and applications," IEEE Signal Process. Mag., Vol. 25, No. 5, 57-80, Sep. 2008.
doi:10.1109/MSP.2008.926683
26. Lin, H. P. and M. J. Tseng, "Two-layer multistate Markov model for modelling a 1.8 GHz narrow-band wireless propagation channel gin urban Taipei city," IEEE Trans. Veh. Technol., Vol. 54, No. 4, 435-446, Mar. 2005.
doi:10.1109/TVT.2004.841523
27. Morgadinho, S., R. F. S. Caldeirinha, M. O. Al-Nuaimi, et al. "Time-variant radio channel characterization and modelling of vegetation media at millimeter-wave frequency," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1557-1568, Mar. 2012.
doi:10.1109/TAP.2011.2180301