Vol. 148
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-07-01
Novel Short Tapered Leaky Wave Antennas with Complementary Split Ring Resonantor for Back Lobe Suppression
By
Progress In Electromagnetics Research, Vol. 148, 41-53, 2014
Abstract
Two novel short tapered leaky wave antenna (LWA) designs with a complementary split ring resonator (CSRR) structure are proposed in this paper. The CSRR structure is positioned at 1/4λg away from the open-end edge of the LWA. For one of the antenna designs, the CSRR is placed at the ground plane; for the other one, the CSRR is placed on the antenna plane. The reflected wave caused by the open-end edge of the LWA is cancelled by the reflected wave caused by the CSRR, thus, the back lobe can be effectively suppressed. The length of these two short tapered LWAs with CSRR design is only 1.2λg at 4.3 GHz. According to the measurement results, the impedance bandwidth is 650 MHz for 7 dB return loss, which covers the range from 4.3 GHz to 4.95 GHz. The back lobe can be suppressed effectively about more than 12 dB at the whole operating frequency band. The scanning range of the main beam is about 34˚, which covers the scanning angle from 10˚to 44˚.
Citation
Jie-Huang Huang, Chien-Rung Huang, and Christina F. Jou, "Novel Short Tapered Leaky Wave Antennas with Complementary Split Ring Resonantor for Back Lobe Suppression," Progress In Electromagnetics Research, Vol. 148, 41-53, 2014.
doi:10.2528/PIER14022607
References

1. Menzel, W., "A new travelling wave antenna in microstrip," 8th European Microwave Conference,, 302-306, 1978.

2. Oliner, A. A. and K. S. Lee, "The nature of the leakage from higher modes on microstrip line," IEEE Symposium on MTT-S International Digest, 57-60, Baltimore, MD, USA, Jun. 1986.

3. Luxey, C. and J. M. Latheurte, "Simple design of dual-beam leaky-wave antennas in microstrips," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 144, No. 6, 397-402, 1997.
doi:10.1049/ip-map:19971407

4. Shih, Y., S. Chen, C. Hu, and C. F. Jou, "Active feedback microstrip leaky wave antenna-synthesiser design with suppressed back lobe radiation," Electon. Lett., Vol. 35, No. 7, 513-514, 1999.
doi:10.1049/el:19990410

5. Guan, H., C. Wang, and C. F. Jou, "Suppression of reflected wave of leaky-wave antenna by utilizing an aperture-fed patch antenna," Asia-Pacific Microwave Conference, APMC, 966-969, Taipei, Taiwan, Dec. 2001.

6. Wang, C., H. Guan, and C. F. Jou, "A novel method for short leaky-wave antennas to suppress the reflected wave," Microwave and Optical Tech. Lett., Vol. 36, No. 2, 129-131, 2003.
doi:10.1002/mop.10696

7. Chiou, Y., J. Wu, J. Huang, and C. F. Jou, "A novel short leaky-wave antenna for suppressing the back lobes," International Workshop on Antenna Technology (iWAT), 1-4, Santa Monica, CA, USA, Feb. 2009.

8. Wu, J., C. Wang, and C. F. Jou, "Method of suppressing the side lobe of a tapered short leaky wave antenna," IEEE Antennas and Wireless Propagat. Lett., Vol. 8, 1146-1149, 2009.
doi:10.1109/LAWP.2009.2034474

9. Wu, J., C. F. Jou, and C. Wang, "A compact wideband leaky-wave antenna with etched slot elements and tapered structure," IEEE Trans. on Antennas and Propagat., Vol. 58, No. 7, 2176-2183, 2010.
doi:10.1109/TAP.2010.2048847

10. Losito, O., M. Gallo, V. Dimiccoli, D. Barletta, and M. Bozzetti, "A tapered design of a CRLH-TL leaky wave antenna," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 357-360, Rome, Apr. 2011.

11. Falcone, F., T. Lopetegi, J. D. Baena, R. Marqués, F. Martín, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microwave Wireless Compon. Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

13. Niu, J. and X. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.
doi:10.2528/PIER07051802

14. Zhang, X., Z. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

15. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter using complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.

16. Wu, G., W. Mu, X. Dai, and Y. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

17. Zhang, J., B. Cui, S. Lin, and X. Sun, "Sharp-rejection low-pass filter with controllable transmission zero using complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 69, 219-226, 2007.
doi:10.2528/PIER06122103

18. Ding, J., Z. Lin, Z. Ying, and S. He, "A compact ultra-wideband slot antenna with multiple notch frequency bands," Microwave and Optical Tech. Lett., Vol. 49, No. 12, 3056-3060, 2007.
doi:10.1002/mop.22892

19. Braaten, B. D., "A novel compact UHF RFID tag antenna designed with series connected open complementary split ring resonator (OCSRR) particles," IEEE Trans. on Antennas and Propagat., Vol. 58, No. 11, 3728-3733, 2010.
doi:10.1109/TAP.2010.2071348

20. Anderson, J., K. Johnson, C. Satterlee, A. Lynch, and B. D. Braaten, "A reduced frequency printed quasi-Yagi antenna symmetrically loaded with meander open complementary split ring resonator (MOCSRR) elements," IEEE International Symposium on Antennas and Propagation, 270-273, Spokane, WA, USA, Jul. 2011.

21. Yuandan, D., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. on Antennas and Propagat., Vol. 60, No. 2, 772-785, 2012.
doi:10.1109/TAP.2011.2173120

22. Chang, D. C. and E. F. Kuester, "Total and partial reflection from the end of a parallel-plate waveguide with an extended dielectric slab," Radio Science, Vol. 16, No. 1, 1-13, 1981.
doi:10.1029/RS016i001p00001

23. Oliner, A. A. and K. S. Lee, "Microstrip leaky wave strip antennas," IEEE Symposium on Antennas and Propagation, Vol. 24, 443-446, Philadelphia, PA, USA, Jun. 1986.

24. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, 2005.