Vol. 145
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-03-24
Performance of an Implanted Electrically Coupled Loop Antenna Inside Human Body
By
Progress In Electromagnetics Research, Vol. 145, 195-202, 2014
Abstract
Implanted antennas are widely used in hyperthermia and biomedical applications. The antenna needs to be extremely small while maintaining a permissible Specific Absorption Rate (SAR) and being able to cope with the detuning effects due to the dielectric properties of human body tissues. Most of the proposed antennas for implanted applications are electric field antennas such as Planner Inverted-F Antennas (PIFA) and micro-strip patch antennas. By minimizing the size of an electric field antenna, the near zone electric field will increase, resulting in higher SAR. This work is devoted to design a miniaturized magnetic field antenna to overcome the above limitations. The proposed electrically coupled loop antenna (ECLA) has high magnetic field and low electric field in the near zone and therefore, has a small SAR and is less sensitive to detuning effects. ECLA is designed at the Medical Implanted Communication Service (MICS) band with dimensions of (5×5×3 mm3). ECLA has been simulated inside one-layer human body model, three-layer spherical human head model, human head and human body. From the simulation results, ECLA inside the human body has a 5 MHz -3 dB bandwidth, -14 dB gain, and radiation efficiency of 0.525%. The 1 g average SAR inside the human body for 10 mW input power is about 1 W/kg which is 7 times lower than the SAR for a patch antenna of the same size with the same accepted power.
Citation
Ali Ibraheem, and Majid Manteghi, "Performance of an Implanted Electrically Coupled Loop Antenna Inside Human Body," Progress In Electromagnetics Research, Vol. 145, 195-202, 2014.
doi:10.2528/PIER14022005
References

1. Patel, M. and J. Wang, "Applications, challenges, and prospective in emerging body area networking technologies," IEEE Wireless Communications, Vol. 17, 80-88, 2010.
doi:10.1109/MWC.2010.5416354

2. Merli, F., L. Bolomey, J. Zurcher, G. Corradini, E. Meurville, and A. K. Skriverviky, "Design, realization and measurements of a miniature antenna for implantable wireless communication systems," IEEE Transactions on Antennas and Propagation, Vol. 59, 3544-3555, 2011.
doi:10.1109/TAP.2011.2163763

3. Kiourti, A. and K. S. Nikita, "A review of implantable patch antennas for biomedical telemetry: Challenges and solutions [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 54, 210-228, 2012.
doi:10.1109/MAP.2012.6293992

4. Karlsson, A., "Physical limitations of antennas in a lossy medium," IEEE Transactions on Antennas and Propagation, Vol. 52, 2027-2033, 2004.
doi:10.1109/TAP.2004.832335

5. Hall, , P. S. and Y. Hao, "Antennas and propagation for body centric communications," First European Conference on Antennas and Propagation 2006, EuCAP 2006, 1-7, 2006.
doi:10.1109/EUCAP.2006.4584864

6. Jaehoon, K. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1934-1943, 2004.
doi:10.1109/TMTT.2004.832018

7. Soontornpipit, P., C. M. Furse, and C. You Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1944-1951, 2004.
doi:10.1109/TMTT.2004.831976

8. Lee, C. M., T. C. Yo, C. H. Luo, C. H. Tu, and Y. Z. Juang, "Compact broadband stacked implantable antenna for biotelemetry with medical devices," Electronics Letters, Vol. 43, 660-662, 2007.
doi:10.1049/el:20070463

9. Lee, C. M., T. C. Yo, F. J. Huang, and C. H. Luo, "Dual-resonant π-shape with double L-strips PIFA for implantable biotelemetry," Electronics Letters, Vol. 44, 837-838, 2008.
doi:10.1049/el:20081235

10. Azad, M. Z. and M. Ali, "A miniature implanted inverted-F antenna for GPS application," IEEE Transactions on Antennas and Propagation, Vol. 57, 1854-1858, 2009.
doi:10.1109/TAP.2009.2016805

11. Namjun, C., T. Roh, J. Bae, and H. J. Yoo, "A planar MICS band antenna combined with a body channel communication electrode for body sensor network," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 2515-2522, 2009.
doi:10.1109/TMTT.2009.2029952

12. Sze, J. Y., J. C. Wang, and C. C. Chang, "Axial-ratio bandwidth enhancement of asymmetric-CPW-fed circularly-polarised square slot antenna," Electronics Letters, Vol. 44, 1048-1049, 2008.
doi:10.1049/el:20081858

13. Wei, X., K. Saito, M. Takahashi, and K. Ito, "Performances of an implanted cavity slot antenna embedded in the human arm," IEEE Transactions on Antennas and Propagation, Vol. 57, 894-899, 2009.
doi:10.1109/TAP.2009.2014579

14. Sze, J.-Y., C. I. G. Hsu, Z.-W. Chen, and C.-C. Chang, "Broadband CPW-fed circularly polarized square slot antenna with lightening-shaped feedline and inverted-L grounded strips," IEEE Transactions on Antennas and Propagation, Vol. 58, 973-977, 2010.
doi:10.1109/TAP.2009.2039335

15. Pan, S. P., J. Y. Sze, and P.-J. Tu, "Circularly polarized square slot antenna with a largely enhanced axial-ratio bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 969-972, 2012.
doi:10.1109/LAWP.2012.2213568

16. Jones, K. M., J. A. Mechling, J. W. Strohbehn, and B. S. Trembly, "Theoretical and experimental SAR distributions for interstitial dipole antenna arrays used in hyperthermia," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, 1200-1209, 1989.
doi:10.1109/22.31079

17. Gosalia, K., M. S. Humayun, and G. Lazzi, "Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis," IEEE Transactions on Antennas and Propagation, Vol. 53, 2365-2373, 2005.
doi:10.1109/TAP.2005.852514

18. Lin, H.-Y., M. Takahashi, K. Saito, and K. Ito, "Performance of implantable folded dipole antenna for in-body wireless communication," IEEE Transactions on Antennas and Propagation, Vol. 61, 1363-1370, 2013.
doi:10.1109/TAP.2012.2227099

19. Manteghi, M., "Electrically coupled loop antenna as a dual for the planar inverted-F antenna," Microwave and Optical Technology Letters, Vol. 55, 1409-1412, 2013.
doi:10.1002/mop.27553

20. Kim, O. S., "Minimum Q electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, 3551-3558, 2012.
doi:10.1109/TAP.2012.2201096