Vol. 36
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-04-25
Constraint-Based Synthesis of Linear Antenna Array Using Modified Invasive Weed Optimization
By
Progress In Electromagnetics Research M, Vol. 36, 9-22, 2014
Abstract
This paper presents a novel technique for the synthesis of unequally spaced linear antenna array. The modified Invasive Weed Optimization (IWO) algorithm is applied to optimize the antenna element positions for suppressing peak side lobe level (PSLL) and for achieving nulls in specified directions. The novelty of the proposed approach is in the application of a constraint-based static penalty function during optimization of the array. The static penalty function is able to put selective pressure on the PSLL, the first null beam width (FNBW) or the accurate null positioning as desired by the application at hand lending a high degree of flexibility to the synthesis process. Various design examples are considered and the obtained results are validated by comparing with the results obtained using Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Cat Swarm Optimization (CSO). Results demonstrate that the proposed method outperforms the previously published methods in terms of a significant reduction in peak side lobe level while maintaining strong nulls in desired directions. The flexibility and ease of implementation of the modified IWO algorithm in handling the constraints using static penalty function is evident from this analysis, showing the usefulness of the constraint based method in electromagnetic optimization problems.
Citation
Lakshman Pappula, and Debalina Ghosh, "Constraint-Based Synthesis of Linear Antenna Array Using Modified Invasive Weed Optimization," Progress In Electromagnetics Research M, Vol. 36, 9-22, 2014.
doi:10.2528/PIERM14021703
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, New York, 1997.

2. Kummer, W. H., "Basic array theory," Proceedings of IEEE, Vol. 80, 127-139, Jan. 1992.
doi:10.1109/5.119572

3. Ares-pena, F. J., J. A. Gonzalez, E. Lopez, and S. R. Rengarajan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, 506-510, Mar. 1999.
doi:10.1109/8.768786

4. Johnson, J. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, 7-21, Aug. 1997.
doi:10.1109/74.632992

5. Yan, K. K. and Y. Lu, "Sidelobe reduction in array pattern synthesis using genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 7, 1117-1122, Jul. 1997.

6. Chen, K., X. Yun, Z. He, and C. Hun, "Synthesis of sparse planar arrays using modified real genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1067-1073, Apr. 2007.
doi:10.1109/TAP.2007.893375

7. Murino, V., A. Trucco, and C. Regazzoni, "Synthesis of unequally spaced arrays by simulated annealing," IEEE Transactions on Signal Processing, Vol. 44, No. 1, 119-123, Jan. 1996.
doi:10.1109/78.482017

8. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of Taguchi's optimization method and self-adaptive di®erential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306

9. Lin, C., A.-Y. Qing, and Q.-Y. Feng, "Synthesis of unequally spaced antenna arrays by using di®erential evolution," IEEE Transactions on Antennas and Propagation, Vol. 58, 2553-2561, 2010.

10. Perez Lopez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
doi:10.2528/PIER08122212

11. Boeringer, D. W. and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 771-779, Mar. 2004.
doi:10.1109/TAP.2004.825102

12. Robinson, J. and Y. Rahmat-Samii., "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

13. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum side lobe level and null controlling using particle swarm optimization," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, 2674-2679, Aug. 2005.
doi:10.1109/TAP.2005.851762

14. Jin, N. and Y. R. Samii, "Advances in particle swarm optimization for antenna designs: Real number, binary, single-objective and multiobjective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 556-567, Mar. 2007.
doi:10.1109/TAP.2007.891552

15. Khodier, M. M. and M. Al-Aqeel, "Linear and circular array optimization: A study using particle swarm intelligence," Progress In Electromagnetics Research B, Vol. 15, 347-373, 2009.
doi:10.2528/PIERB09033101

16. Liu, D., Q.-Y. Feng, W.-B. Yang, and X. Yu, "Synthesis of unequally spaced antenna arrays using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502

17. Pappula, L. and D. Ghosh, "Linear antenna array synthesis for wireless communications using particle swarm optimization," Proceedings of the IEEE International Conference on Advanced Communications Technology,, 780-783, Jan. 2013.

18. Rajo-lglesias, E. and O. Quevedo-Teruel, "Linear array synthesis using an ant colony optimization based algorithm," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 2, 70-79, Apr. 2007.

19. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecological Informatics, Vol. 1, No. 4, 355-366, Dec. 2006.
doi:10.1016/j.ecoinf.2006.07.003

20. Karimkashi, S. and A. A. Kishk, "Invasive weed optimization and its features in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1269-1278, Apr. 2010.
doi:10.1109/TAP.2010.2041163

21. Roy, G. G., S. Das, P. Chakraborty, and P. N. Suganthan, "Design of non uniform circular antenna arrays using a modified invasive weed optimization algorithm," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 110-118, Jan. 2011.
doi:10.1109/TAP.2010.2090477

22. Pappula, L. and D. Ghosh, "Large array synthesis using invasive weed optimization," Proceedings of the IEEE International Conference on Microwave and Photonics, 1-6, Dec. 2013.

23. Pappula, L. and D. Ghosh, "Linear antenna array synthesis using cat swarm optimization," International Journal of Electronics and Communications (AEU), http://dx.doi.org/10.1016/j.aeue.2013.12.012, Jan. 2014.

24. Homaifar, A., S. H. Y. Lai, and X. Qi, "Constrained optimization via genetic algorithms," Simulation, Vol. 62, 242-254, 1994.
doi:10.1177/003754979406200405

25. Joines, J. A. and C. R. Houck, "On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's," Proceedings of the First IEEE Conference on Evolutionary Computation, 579-584, 1994.

26. Rao, S. S., "Engineering Optimization: Theory and Practice," John Wiley & Sons, United States of America, 1996.