Vol. 35
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-03-20
Survey of Temporal Basis Functions for Transient Scattering by Conducting Cylinders Using TD-EFIE Formulation-TE Case
By
Progress In Electromagnetics Research M, Vol. 35, 121-131, 2014
Abstract
In this paper, different causal sub-domain temporal basis functions are investigated to make the explicit marching-on-in time schemes converge and stable for solving two dimensional time domain EFIE. PEC cylinders with arbitrary cross section are illuminated by a TE-polarized Gaussian plane wave. Two different approximations are used for calculation of the singular elements of the impedance matrix analytically. In the Time Domain Method of Moment (TD-MoM) formulation of the Electric Field Integral Equation (EFIE) of the problem, the free-space two-dimensional Green's function and triangular spatial basis function are used. By employing Galerkin's method in spatial domain and point matching in time domain, all time convolution integrals and self-terms are evaluated analytically to increase the accuracy and stability of the proposed technique. The stability and efficiency of the new technique are confirmed by comparison with literature.
Citation
Athar Azari, Zaker Hossein Firouzeh, and Abolghasem Zeidaabadi-Nezhad, "Survey of Temporal Basis Functions for Transient Scattering by Conducting Cylinders Using TD-EFIE Formulation-TE Case," Progress In Electromagnetics Research M, Vol. 35, 121-131, 2014.
doi:10.2528/PIERM14020502
References

1. Hu, J. L. and C. H. Chan, "Improved temporal basis function for time domain electric field integral equation method," Electronics Letters, Vol. 35, No. 11, 883-885, 1999.
doi:10.1049/el:19990598

2. Zhang, G. H., M. Y. Xia, and X. M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003

3. Bennett, C. L. and W. L. Weeks, "Transient scattering from conducting cylinders," IEEE Trans. Antennas Propagat., Vol. 18, No. 5, 627-633, 1970.
doi:10.1109/TAP.1970.1139756

4. Rao, S. M., D. A. Vechinski, and T. K. Sarkar, "Transient scattering by conducting cylinders --- Implicit solution for the transverse electric case ," Microwave and Opt. Tech. Lett., Vol. 21, No. 2, 129-134, 1999.
doi:10.1002/(SICI)1098-2760(19990420)21:2<129::AID-MOP13>3.0.CO;2-5

5. Geranmayeh, A., W. Ackermann, and T. Weiland, "Temporal discretization choices for stable boundary element method in electromagnetic scattering problems," Applied Numerical Mathematics, Vol. 59, No. 11, 2751-2773, 2009.
doi:10.1016/j.apnum.2008.12.026

6. Rynne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 12, 1181-1205, Dec. 1990.
doi:10.1163/156939390X00762

7. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, No. 1, 45, 2003.

8. Ding, J., C. Gu, Z. Li, and Z. Niu, "Analysis of transient electromagnetic scattering using time domain fast dipole method," Progress In Electromagnetics Research, Vol. 136, 543-559, 2013.
doi:10.2528/PIER12121104

9. Ding, J., L. Yu, W. Xu, C. Gu, and Z. Li, "Analysis of transient electromagnetic scattering using the multilevel dipole method," Progress In Electromagnetics Research, Vol. 140, 401-413, 2013.
doi:10.2528/PIER13041003

10. Qin, S.-T., S.-X. Gong, R. Wang, and L.-X. Guo, "A TDIE/TDPO hybrid method for the analysis of TM transient scattering from two dimensional combinative conducting cylinders," Progress In Electromagnetics Research, Vol. 102, 181-195, 2010.
doi:10.2528/PIER09122405

11. Geranmayeh, A., W. Ackermann, and T. Weiland, "Proper combination of integrators and interpolators for stable marching-on-in time schemes," Proc. 10th Int. Conf. on Electromagnetics in Advance Applications (ICEAA' 07), 948-951, Torino, Italy, 2007.

12. Firouzeh, Z. H., R. Moini, S. H. H. Sadeghi, R. Faraji-Dana, and G. A. E. Vandenbosch, "A new robust technique for transient analysis of conducting cylinders --- TM case," 5th European Conference on Antennas and Propagation, EuCAP 2011, 1353-1356, Rome, Italy, Apr. 11-15, 2011.

13. Wang, P., M. Y. Xia, J. M. Jin, and L. Z. Zhou, "Time domain integral equation solvers using quadratic B-Spline temporal basis functions," Microwave and Optical Technology Letters, Vol. 49, No. 5, 1154-1159, 2007.
doi:10.1002/mop.22385

14. Glisson, A. W. and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces," IEEE Trans. Antennas Propagat., Vol. 28, No. 5, 593-603, 1998.
doi:10.1109/TAP.1980.1142390

15. Manara, G., A. Monorchio, and R. Reggiannini, "A space-time discretization criterion for a stable time-marching solution of the electric ¯eld integral equation," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 527-532, 1997.
doi:10.1109/8.558668

16. Dwight, H. B., Tables of Integrals and Other Mathematical Data, 3rd Ed., The Macmillan Company, 1957.

17. Rao, S. M., Time Domain Electromagnetics, Academic Press, New York, 1999.

18. Geranmayeh, A., W. Ackermann, and T. Weiland, "Survey of temporal basis functions for integral equation method," Proc. 7th IEEE Workshop on Computational Electromagnetics in Time-Domain, CEM-TD' 07, Vol. 533, 1-4, Perugia, Italy, 2007.