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Survey of Temporal Basis Functions for Transient Scattering by
Conducting Cylinders Using TD-EFIE Formulation-TE Case

Athar Azari*, Zaker H. Firouzeh, and Abolghasem Zeidaabadi-Nezhad

Abstract—In this paper, different causal sub-domain temporal basis functions are investigated to make
the explicit marching-on-in time schemes converge and stable for solving two dimensional time domain
EFIE. PEC cylinders with arbitrary cross section are illuminated by a TE-polarized Gaussian plane
wave. Two different approximations are used for calculation of the singular elements of the impedance
matrix analytically. In the Time Domain Method of Moment (TD-MoM) formulation of the Electric
Field Integral Equation (EFIE) of the problem, the free-space two-dimensional Green’s function and
triangular spatial basis function are used. By employing Galerkin’s method in spatial domain and point
matching in time domain, all time convolution integrals and self-terms are evaluated analytically to
increase the accuracy and stability of the proposed technique. The stability and efficiency of the new
technique are confirmed by comparison with literature.

1. INTRODUCTION

Methods based on time domain integral equations (TDIEs) have been widely used to analyze scattering
from conducting and dielectric surfaces and also characterizing transient radiation from antennas [1].
The advantages of TDIE methods in regards to finite difference time domain (FDTD) technique are
the solution of fewer unknowns due to using surface discretization and exclusion of absorbing boundary
conditions (ABCs) for open-region problems [2].

In recent years, well-known integral equation (IE) formulation having either the electric field
or the magnetic field as unknown (EFIE or MFIE, respectively) is used to compute the transient
electromagnetic scattering by a perfectly conducting cylinder and solved by the time-domain method of
moments (TD-MoM). The free-space two-dimensional Green’s function is firstly used by Bennett and
Weeks [3] to calculate the transient currents on conducting cylinders by a numerical solution of the time-
domain magnetic field integral equation (TD-MFIE). The scattered field is obtained by the so-called
marching-on-in-time method (MOT) at each space-time point. In [4], an implicit solution approach was
applied to transverse electric (TE) incidence onto two-dimensional conducting cylinders, for both EFIE
and MFIE formulations. Although the solution technique was simple, accurate and stable, two main
drawbacks were observed, i.e., late-time instability and high computational complexity. The unintended
latetime growing oscillations are originated at the system discretization step in the conversion of the
integral equation to a discrete time-space model [5]. Many techniques have been developed to solve
the late-time instability [6, 7]. In addition, the TDIE formulations suffer from great difficulties for
electrically large objects, due to the need of using fast algorithms to solve TDIEs. In the past decades,
many fast algorithms such as time domain fast dipole method (TD-FDM) [8], multilevel time domain
fast dipole method [9] and the hybrid of TDIE and time domain physical optics (TDPO) methods [10]
have been introduced to reduce the memory requirement and computational complexity of the MOT
scheme. A wise solution to significantly enhance the extent of the stable region, reduce numerical errors
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and increase the efficiency is to use analytical time derivatives and time convolution integrals arising in
the TDIEs [11, 12]. One effective approach to improve the stability and convergence of the MOT scheme
is to use proper temporal basis functions (TBFs) for interpolation between discrete time samples [13].

The purpose of this paper is to investigate the effect of various temporal basis functions on the
convergence and late-time stability of TD-MoMs for solving the time-domain electric field integral
equation (TD-EFIE) of a conducting cylinder illuminated by transverse electric (TE) incident Gaussian
plane waves. The cylinder is presumed to have an arbitrary cross section and to be infinitely long.
The two-dimensional time-domain Green’s function is used to develop the TD-EFIE in which the time
convolution integral is calculated analytically to increase the accuracy and stability. Moreover, the
logarithmic singularity of self-terms is dealt with analytically. Five different TBFs such as rectangular,
triangular, quadratic Lagrange, cubic Lagrange and shifted quadratic B-Spline are used to solve the TD-
EFIE formulation. Then, the final matrix equation is solved by means of an explicit MOT procedure
which leads to the space-time current distribution on the conducting two-dimensional cylinder.

The paper is organized as follows. In the next section, the problem is formulated, and its related
TD-EFIE is solved by a TD-MoM scheme. In addition, five different temporal basis functions (TBFs)
are presented to develop the TD-MoM solution. Section 3 describes two approximate formulations to
calculate self-terms analytically. Numerical results are presented in Section 4, including a comparison
with results from literature. This section also discusses the efficiency and convergence properties of the
proposed algorithm. Finally, conclusions are given.

2. FORMULATION

Consider an infinite perfectly electric conducting (PEC) cylinder with arbitrary cross section that resides
parallel to z-axis in free space (permittivity ε0, permeability µ0). As shown in Figure 1, C denotes the
circumference of the cross section of the cylinder. an represents an outward-directed unit vector normal
to the contour C in each point. The tangential vector aτ is then obtained by aτ = az × an. The
conducting cylinder is illuminated by a TE-polarized plane wave. Therefore, the incident magnetic
field is parallel to z-axis. The incident electric field Einc induces a continuous surface current J in the
transverse direction of the cylinder axis, which produces the scattered field. By enforcing the boundary
condition for the electric field on the cylinder surface the EFIE equation is obtained as:

[
∂A
∂t

+∇Φ
]

tan

=
[
Einc

]
tan

(1)

where

A(ρ, t) = µ0

∫

C
J(ρ′, t) ∗G(ρ, t; ρ′) dc′ (2)

Φ(ρ, t) =
1
ε0

∫

C
ρs(ρ′, t) ∗G(ρ, t; ρ′) dc′ (3)

Figure 1. A conducting cylinder illuminated by a TM transient pulse.
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Figure 2. The cylinder circumference is
subdivided into segments.

Figure 3. Triangular spatial basis function.

G(ρ, t; ρ′) =
u(t−R/c0)

2π
√

t2 − (R/c0)2
(4a)

R =
∣∣ρ− ρ′

∣∣ (4b)

G(ρ, t; ρ′) is the two-dimensional Green’s function in time domain. R is the distance between the
observation point ρ and the source point ρ′. The surface electric charge density is denoted by ρs. The
time-domain convolution is denoted by ∗, and u(t) is the Heaviside step function. c0 is the speed of
light in free space.

The TD-EFIE can be solved numerically by discretizing the surface current density in both space
and time with Ns spatial basis functions and Nt temporal basis functions:

J(ρ, t) = aτ

Ns∑

n=1

Nt∑

i=1

Ii
nfn(ρ) gi(t) (5)

where Ii
n is the unknown real coefficient at a time ti for the nth segment. fm(ρ) and gi(t) are the spatial

and temporal basis functions respectively.
Let the cylinder circumference C be subdivided into segments with length ∆τm, as shown in

Figure 2. Note that all the field quantities are invariant with respect to the z axis because the cylinder
is infinite along the axis. Moreover, the current flow is continuous along the contour C. It is necessary
the spatial basis functions are zero at the boundary points of the integration interval due to using
the proposed formulation. In addition, the expansion functions around the contour can extend across
any bend or edge. Therefore, the spatial basis functions, fn(ρ), used here are triangular as shown in
Figure 3.

The temporal expansion functions should have the analytical time convolution integral. In addition,
these basis functions should be casual to simply use in the MOT algorithm. Here the rectangular,
triangular, quadratic Lagrange, cubic Lagrange and shifted quadratic B-Spline TBFs are used and
defined as (6a) to (6e) relations respectively [5]. In the special case of quadratic B-Spline, the function
is shifted by ∆t/2 in time to make the function causal. These functions are plotted in Figure 4.

g0(t) =
{

1 |t| < ∆t/2
0 elsewhere

(6a)

g0(t) =
{

1− t/∆t |t| ≤ ∆t

0 elsewhere
(6b)

g0(t) =





1± 3
2

(
t

∆t

)
+ 1

2

(
t

∆t

)2 + : −∆t ≤ t ≤ 0, − : ∆t ≤ t ≤ 2∆t

1− (
t

∆t

)2 0 ≤ t ≤ ∆t

0 elsewhere

(6c)
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Figure 4. The various temporal basis functions.

g0(t) =





1 + 11
6

(
t

∆t

)
+

(
t

∆t

)2 + 1
6

(
t

∆t

)3 −∆t ≤ t ≤ 0
1 + 1

2

(
t

∆t

)− (
t

∆t

)2 − 1
2

(
t

∆t

)3 0 ≤ t ≤ ∆t

1− 1
2

(
t

∆t

)− (
t

∆t

)2 + 1
2

(
t

∆t

)3 ∆t ≤ t ≤ 2∆t

1− 11
6

(
t

∆t

)
+

(
t

∆t

)2 − 1
6

(
t

∆t

)3 2∆t ≤ t ≤ 3∆t
0 elsewhere

(6d)

g0(t) =





1
2

(
t

∆t

)2 +
(

t
∆t

)
+ 1

2 −1 ≤ t
∆t < 0

− (
t

∆t

)2 +
(

t
∆t

)
+ 1

2 0 ≤ t
∆t < 1

1
2

(
t

∆t

)2 − 2
(

t
∆t

)
+ 2 1 ≤ t

∆t < 2
0 elsewhere

(6e)

Furthermore, the temporal basis function gi(t) at time i∆t is related to g0(t) by

gi(t) = g0(t− i ·∆t), i = 0, 1, . . . , Nt (7)

where ∆t is the time step of the analysis.
Substituting (5) in (2) and (3), employing fm(ρ) as testing functions and point matching at the

tk = k ·∆t in space and time, respectively, and the inner product defined in (8) for TD-EFIE (1), the
TD-MoM formulation is obtained as follows.

〈a,b〉 =
∫

C

a · bdC ′ (8)

〈
fmaτ ,

∂A
∂t

〉∣∣∣∣
t=tk

+ 〈fmaτ ,∇Φ〉|t=tk
=

〈
fmaτ ,Einc

〉∣∣
t=tk

(9)

〈fmaτ ,Einc〉∣∣
t=tk

= Einc (ρm, k∆t) ·∆τmaτ (10)
〈

fmaτ ,
∂A
∂t

〉∣∣∣∣
t=tk

= µ0

Ns∑

n=1

Nt∑

i=1

Ii
n∆τm∆τnζmn(tk−i) (11)

〈fmaτ ,∇Φ〉|t=tk
= µ0c

2
0

Ns∑

n=1

Nt∑

i=1

Ii
n (ζm+n+(tk−i)− ζm+n−(tk−i) −ζm−n+(tk−i) + ζm−n−(tk−i)) (12)

where

ζmn(tk−i) =
1

∆τm∆τn

∫

∆τm

∫

∆τn

aτ · aτ ′

(
∂

∂t
g0(t) ∗G

(
ρ, t; ρ′

))∣∣∣∣
t=tk−i

dτ ′dτ (13)
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ζm±n±(tk−i) =
1

∆τm±∆τn±

∫

∆τm±

∫

∆τn±

(
G0(t) ∗G

(
ρ, t; ρ′

))∣∣
t=tk−i

dτ ′dτ (14)

Gi(t) =
∫ t

−∞
gi(t′)dt′ (15)

Equation (12) is derived by applying integration by parts with respect to τ and making use of the fact
that the spatial basis functions fm(ρ) are zero at the boundary points of the integration interval δτm

as shown in Figure 3. Moreover, the derivative of fn(ρ′) generates two rectangular pulses with positive
and negative amplitudes centered at n− and n+, respectively.

It is worth mentioning that the triangular basis functions in (10) and (11) can be replaced
by rectangular basis functions without noticeably affecting the accuracy of the final result [14].
Equations (9)–(15) form the following matrix equations from which the current distribution on the
infinite conducting cylinder can be obtained

Nt∑

i=1

[
Φk−i

]
Ns×Ns

· [Ii
]
Ns×1

=
[
V k

]
Ns×1

, k = 1, 2, . . . , Nt (16)

ϕ(k−i)
mn = µ0∆τm∆τnζmn(tk−i) + µ0c

2
0 (ζm+n+(tk−i)− ζm+n−(tk−i)− ζm−n+(tk−i) + ζm−n−(tk−i)) (17)

vk
m = Einc(ρm, k∆t) ·∆τmaτ (18)

[V k] and [Ii] are column vectors representing the incident field at time k∆t, and the spatial current
distribution on the segments at time i∆t, respectively. The matrix [Φk−i] relates the spatial current
distribution on the segments at time i∆t to the scattered electric field component tangential to the
segments at time k∆t.

According to the temporal basis functions and using causality, (16) is reduced to
[
I1

]
=

[
Φ0

]−1 · [V 1
]
, for k = 1 (19)

[
Ik

]
=

[
Φ0

]−1 ·
([

V k
]
−

k−1∑

i=1

[
Φk−i

]
· [Ii

]
)

, for k ≥ 2 (20)

Note that the [Φ0] matrix contains vector potential terms, and the [V k] vector represents the incident
field at time tk which are known. The [Φ0] matrix is a near diagonal matrix, in which the elements ϕ0

m,m

are related to self-coupling and ϕ0
m,(m+1) and ϕ0

(m+1),m are related to the near coupling. The numerical
procedure starts at k = 2, assuming the current to be zero at k = 1, and then marches on in time for
k = 3, 4, 5, . . . , Nt. This form is called the explicit marching-on in time formulation [15]. The time
convolutions in (13) and (14) are analytically calculated for the different TBFs using (6a)–(6e). For
instance, the time convolutions using the triangular TBF (6b) has been given in Appendix A.

The spatial integral for far segments can be approximated by the product of the segment length
∆τm and the integrand in which R is replaced by Rm,n as follows.

Rm,n = |ρm − ρn| , m 6= n. (21)

For various temporal basis functions when calculating the elements ϕ0
m,m, ϕ0

m,(m+1) and ϕ0
(m+1),m, the

integrands in (13) and (14) may have logarithmic singularity which should be calculated analytically.
The singularity extraction is used to overcome this problem as described in the next section.

3. THE SINGULARITY EXTRACTION TECHNIQUE

As mentioned in the previous section, the integrands in (13) and (14) have logarithmic singularity
which can be extracted analytically. In this scheme, the singular parts are integrated with first- and
second-order approximations as follows.

The main singular part of the mentioned integral when t = 0 and m = n is given in (22).∫

∆`

∫

∆`
ln (R) d` d`′ (22)
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Figure 5. The self term part (∆l = ∆τm).

Referring to Figure 5 in the first-order approximation, the observation point (ρm, ϕm) is located at the
middle of segment ∆τm, and the source point (ρm, ϕ′) is varied over it.

The distance between source and observation points, R, is given as:

R =
∣∣ρ− ρ′

∣∣ = 2ρm sin
(

ϕm − ϕ′

2

)
(23)

By replacing R in (22) with (23) and using the approximation of sin(x) ≈ x for small arguments, the
first-order approximation of the singular part can be obtained as∫

∆`

∫

∆`
ln |R| d`d`′ = ∆`2 [ln (∆`/2)− 1] (24)

In the second-order approximation, the source point (ρm, ϕ′) and the observation point (ρm, ϕ) are
varied over segment ∆τm. Then, by replacing R in (22) with (23), and expanding with 603.1 of [16] and
using 610 of [16], the second-order approximation of the singular part is given as:

∫

∆`

∫

∆`
ln |R| d`d`′ = ∆`2 [ln (∆`/2)− 3/2] (25)

For instance, the first- and second-order approximations to extract logarithmic singularity from self-
terms using the triangular TBF (6b) has been given in Appendix B.

It is assumed that ∆t < Rmin/c0 due to providing a stable procedure based on the causality
principle.

4. NUMERICAL RESULTS

This technique has been used to simulate different two-dimensional (2D) structures such as a straight
strip, a 90◦ sharp bend strip, circular and square cylinders. In this section, for instance two PEC infinite
cylinders are posed to demonstrate how the various temporal interpolators can provide late time stability
and convergence of the solution of the transient scattering from infinitely long conducting cylinders. The
numerical results of the proposed technique are obtained using five various causal TBFs viz. rectangular,
triangular, quadratic Lagrange, cubic Lagrange and shifted quadratic B-Spline functions. The cylinders
are illuminated by a TE Gaussian plane wave. The results obtained by the proposed technique for
the straight strip are compared with those computed by using the three-dimensional (3D) Green’s
function of free space in [17]. Chapter 3 in [17], in fact, solves the EFIE for 2D scattering with
TE incident polarizations using 3D Green’s function by zero-order spatial discretization approach. In
addition, the integration is carried out analytically only for self-terms and one-point integration is
used for the evaluation of the rest matrix entries. In addition, the rectangular temporal basis function
and the triangular spatial basis function are used. In addition, for closed smooth surfaces the proposed
technique is compared with the results obtained by [3] using 2D Green’s function of free space. However,
the temporal differentials and convolutions of [3] have been obtained numerically. According to [6], a
stable numerical result can be obtained based on Courant’s stability condition, i.e., ∆t ≤ Rmin/c0

√
2.

In this work, it is used ∆t < Rmin/c0 — the causality principle based on numerical experience. Because
all time convolutions, integrals and differentials are calculated analytically; the numerical errors are
considerably decreased and the extent of stable region is enhanced favorably [18].
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First, consider a straight strip of 0.5 m width centered at the origin and along the y-axis. The strip
is subdivided into 10 uniform segments. The structure is illuminated by a Gaussian plane wave, given
by

Hinc(ρ, t) = azH0
4

T
√

π
e−γ2

γ =
4
T

(c0t− c0t0 − ρ · ak)
(26)

with H0 = 1.0 A/m, ak = −aρ, T = 4 LM, and t0 = 6 LM shown in Figure 6. Note that 1 light meter
(LM) is defined as the unit of time. It is the time that it takes for the electromagnetic wave to travel
1m distance in free space. The current induced at the center of the straight strip by employing different
TBFs using 1st- and 2nd-order approximations are compared in Figure 7 and Figure 8, respectively.
The agreements are good in early time. The simulations are continued to study late-time behavior of the
response. It is observed that the proposed technique using rectangular, triangular and cubic Lagrange
TBFs and employing 2nd-order approximation extend the stable region extremely.

Next, a circular cylinder with a 1m radius is considered. The scatterer is illuminated by the
Gaussian plane wave (26) with H0 = 1/120π A/m, ak = −aρ, T = 2, and t0 = 3 LM since its frequency
spectrum includes a few of internal resonance frequencies of the cylinder. The circumference is uniformly
subdivided into 88 segments. As shown in Figure 9 and Figure 10 although agreement is well in early
time, there are some oscillations because of internal resonances. Here it is observed that by employing

0 2 4 6 8 10 12
Time [LM]

H
   

  (
A

/m
)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Frequency [GHz]

|H
   

 (
f)

|
in

c
in

c

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

Figure 6. The Gaussian pulse of the incident field.
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Figure 7. Comparison of transient current
response at the center of the straight strip using
the first-order approximation.
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Figure 8. Comparison of transient current
response at the center of the straight strip using
the second-order approximation.
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Figure 9. Comparison of transient current
response at the ϕ = 0 of the circular cylinder with
r = 1 m using the first-order approximation.
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Figure 10. Comparison of transient current
response at the ϕ = 0 of the circular cylinder with
r = 1 m using the second-order approximation.

1st-order approximation, only for triangular interpolator the response remains stable. However by
employing the 2nd-order approximation and triangular, quadratic Lagrange and cubic Lagrange TBFs
the stability region is improved. In the case of quadratic Lagrange TBF, the first-order approximation
of the integrator with Courant’s stability condition is not stable; however, the TD-MoM scheme is
late-time stable using the second order approximation of the integrator. The augmented exponential
growth in the late-time regime of the solution is principally originated at the system discretization stage,
namely in the conversion of the integral equation to a discrete time–space model [5]. When higher-order
approximation of the integrator is used for the self-terms there is not observed any late-time instability.

In the case of shifted quadratic B-Spline TBF although the function is smother than the same order
quadratic Lagrange function, the stable region is not extended enough. Because the quadratic B-Spline
function is shifted in time to make the function causal, the peak value is also shifted from zero and
causes the interpolation error added to computational and discretization errors. So the instability is
occurred earlier than expected. In addition, the reduction of the time step size does not influence on
the stability of the solution.

Since the time domain results of the proposed technique were obtained with ∆t ≤ Rmin/c0 the
computation time is much less than the techniques of [3, 17] as shown in Table 1 and Table 2. This is
because all integrals involved in (13) and (14) are calculated in the closed forms. In addition, employing
continuous TBFs to evaluate analytically the time derivatives of the TDIE decreases numerical errors
considerably and enhances the extent of stable region acceptably [18]. Also the late-time stability is
increased by proposed technique compare to [3, 17].

The computer used in this comparison has an AMD Phenom 8650 Triple-core Processor and 2 GB
of RAM. The new technique is considerably faster and more efficient as shown in Table 1 and Table 2.

Table 1. Comparison of the computation times of employing various TBFs for straight strip with
∆τ = 0.05m for simulation time until 15 LM.

Temporal basis

function

Time step

∆t (LM)

1st-order

approximation

(Sec.)

2nd-order

approximation

(Sec.)

[17] Rectangular TBF

Rectangular 0.033 1.54 2.06

∆t = 0.034LM

110 Sec.

Triangular 0.05 1.82 1.84

Quadratic Lagrange 0.045 3.10 3.07

Cubic Lagrange 0.038 5.68 5.69

Shifted Quadratic

B-Spline
0.043 2.87 2.82
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Table 2. Comparison of the computation times of employing various TBFs for circular cylinder with
∆τ = 0.0714m for simulation time until 15 LM.

Temporal basis

function

Time step

∆t (LM)

1st-order

approximation

(Sec.)

2nd-order

approximation

(Sec.)

[3] Rectangular TBF

Rectangular 0.045 ∗ ∗

∆t = 0.045LM

58.8 Sec.

Triangular 0.072 75.2 75.91

Quadratic Lagrange 0.064 129.1 130.9

Cubic Lagrange 0.052 283.1 283.5

Shifted Quadratic

B-Spline
0.065 ∗ 126.1

∗. The response is divergerd before 15 LM.

5. CONCLUSION

In this paper, the effect of various temporal basis functions (TBFs) is investigated in TD-MoM approach
to solve the TD-EFIE formulation of two-dimensional perfectly conducting cylinders illuminated by a
TE-polarized Gaussian plane wave. The numerical results by the new scheme employing 2D Green’s
function and calculating time convolutions, differentials and integrals analytically are compared with the
results from the TD-MoM technique using 3D time domain Green’s function of free space [17] and the
technique using 2D Green’s function and calculation of temporal convolutions, differentials and integrals
numerically [3], demonstrating its accuracy and efficiency. In [3, 17], the time-step size is chosen based
on Courant’s stability condition, but in the proposed technique the time-step size is selected according
to the causality rule, therefore the greater time step sizes are used.

The unintended growing late-time oscillations are originated from the error of space-time
discretization. However, the remarkable efficiency of the proposed TD-MoM formulation arises mainly
from the analytical calculation of the time convolution integrals and the spatial integrals appearing in
the TD-EFIE. Effect of choosing various temporal basis functions as a key factor to increasing stability
and convergence of the TD-MoM solution is investigated. It is observed that by employing triangular
and quadratic Lagrange TBFs, the stable region is vastly extended. But using shifted quadratic B-Spline
function as a smooth causal temporal basis function, the instability is occurred earlier than expected
because of interpolation errors and shifting in time.

APPENDIX A.

As noted in Section 2, all time convolutions, time differentials and time integrals in (13) to (15) can
be calculated analytically. For instance, the time convolutions using the triangular TBF (6b) has been
given as follows.

∂

∂t
g0(t) ∗G

(
ρ, t;ρ′

)

=
1

2π∆t
×





0 t−R/c < −∆t

ln
(

t+∆t+
√

(t+∆t)2−(R/c)2

(R/c)

)
−∆t ≤ t−R/c < 0

ln
(

t+∆t+
√

(t+∆t)2−(R/c)2

(R/c)

)
− 2 ln

(
t+
√

t2−(R/c)2

(R/c)

)
0 ≤ t−R/c < ∆t

ln
(
t+∆t+

√
(t+∆t)2−(R/c)2

)
−2 ln

(
t+

√
t2−(R/c)2

)

+ ln
(

t−∆t +
√

(t−∆t)2 − (R/c)2
) t−R/c > ∆t

(A1)
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G0(t) ∗G(ρ, t;ρ′)

=
1

8π∆t
×





0, t−R/c < −∆t[
2 (t + ∆t)2 + (R/c)2

]
ln

(
t+∆t+

√
(t+∆t)2−(R/c)2

(R/c)

)

−3 (t + ∆t)
√

(t + ∆t)2 − (R/c)2,

−∆t ≤ t−R/c < 0





[
2 (t + ∆t)2 + (R/c)2

]
ln

(
t+∆t+

√
(t+∆t)2−(R/c)2

(R/c)

)

−
(
4t2 + 2 (R/c)2

)
ln

(
t+
√

t2−(R/c)2

(R/c)

)

−3 (t + ∆t)
√

(t + ∆t)2 − (R/c)2 + 6t
√

t2 − (R/c)2





, 0 ≤ t−R/c < ∆t





[
2 (t + ∆t)2 + (R/c)2

]
ln

(
t+∆t+

√
(t+∆t)2−(R/c)2

(R/c)

)

−
(
4t2 + 2 (R/c)2

)
ln

(
t+
√

t2−(R/c)2

(R/c)

)

+
[
2 (t−∆t)2 + (R/c)2

]
ln

(
t−∆t+

√
(t−∆t)2−(R/c)2

(R/c)

)

−3 (t + ∆t)
√

(t + ∆t)2 − (R/c)2

+6t
√

t2 − (R/c)2 − 3 (t−∆t)
√

(t−∆t)2 − (R/c)2





, t−R/c > ∆t,

(A2)

APPENDIX B.

In calculation of the propagation matrix [Φ0] the self-coupling and near coupling elements have
logarithmic singularity. With singularity extraction methods introduced in Section 3, the elements of
ϕ0

m,m ϕ0
m,(m+1) and ϕ0

(m+1),m can be calculated as follow. With first-order approximation, the diagonal
and near diagonal elements are:

ϕ0
m,m =

µ0(∆τm)2

2π∆t

[
ln

(
4c∆t

∆τm

)
+ 1

]
+

2µ0c
2∆t

8π

[
2 ln

(
4c∆t

∆τm

)
− 1

]
, m = 1, 2, . . . , Ns (B1)

ϕ0
m,(m+1) = ϕ0

(m+1),m = −µ0c
2∆t

8π

[
2 ln(

4c∆t

∆τm
)− 1

]
, m = 1, 2, . . . , Ns − 1 (B2)

and with second-order approximation, we have:

ϕ0
m,m =

µ0(∆τm)2

2π∆t

[
ln

(
4c∆t

∆τm

)
+

3
2

]
+

2µ0c
2∆t

8π
2 ln

(
4c∆t

∆τm

)
, m = 1, 2, . . . , Ns (B3)

ϕ0
m,(m+1) = ϕ0

(m+1),m = −µ0c
2∆t

8π
2 ln

(
4c∆t

∆τm

)
, m = 1, 2, . . . , Ns − 1 (B4)
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