Vol. 35
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-02-11
Analysis of the Generalized Case of Scattering from a Ferromagnetic Microwire Grid
By
Progress In Electromagnetics Research M, Vol. 35, 1-10, 2014
Abstract
This paper investigates the generalized case of scattering from a planar grid, containing an infinite number of axially magnetized ferromagnetic microwires placed parallel to each other in free space. A semi-analytical solution is obtained by calculating the local field at the surface of the reference microwire which is the sum of the scattered field from the other microwires as well as the incident field. Graf's theorem is used to transform the scattered field from one coordinate system to the other. Scattering field coefficients for the reference microwire are obtained by matching the tangential field components at the surface of the reference microwire. Simulated results are expressed in terms of the Reflection, Transmission, and Absorption Coefficients for the (TMz) and (TEz) polarizations. For validation, results of the proposed analysis specialized to the case of normal incidence with TMz polarization are compared with the results available in the literature.
Citation
Tarun Kumar, Natarajan Kalyanasundaram, and Bhaurao Kashirao Lande, "Analysis of the Generalized Case of Scattering from a Ferromagnetic Microwire Grid," Progress In Electromagnetics Research M, Vol. 35, 1-10, 2014.
doi:10.2528/PIERM13120406
References

1. Carignan, L.-P., A. Yelon, and D. Menard, "Ferromagnetic nanowire metamaterials: Theory and applications," IEEE Trans. Microwave Theory Techn., Vol. 59, No. 10, 2568-2586, Oct. 2011, DOI: 10.1109/TMTT.2011.2163202.
doi:10.1109/TMTT.2011.2163202

2. Carbonell, J., H. G. Miqule, and J. S. Dehsa, "Double negative metamaterials based on ferromagnetic microwires," Physical Review B, Vol. 81, 024401, 2010.
doi:10.1103/PhysRevB.81.024401

3. Pendry, J., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

4. Liberal, I., I. Ederra, C. Gomez-Polo, A. Labrador, J. I. Perez Landazabal, and R. Gonzalo, "Theoretical modeling and experimental veri¯cation of the scattering from a ferromagnetic microwire," IEEE Trans. Microwave Theory Techn., Vol. 59, No. 3, 517-526, Mar. 2011, DOI: 10.1109/TMTT.2010.2098037.
doi:10.1109/TMTT.2010.2098037

5. Eggimann, W. H., "Scattering of a plane wave on a ferrite cylinder at normal incidence," EEE Trans. Microwave Theory Techn., Vol. 8, No. 4, 440-445, Jul. 1960, DOI: 10.1109/TMTT.1960.1124754.
doi:10.1109/TMTT.1960.1124754

6. Attiya, A. M. and M. A. Alkanhal, "Generalized formulation for the scattering from a ferromagnetic microwire," ACES Journal, Vol. 27, No. 5, 399-407, May 2012.

7. Waldron, R. A., "Electromagnetic wave propagation in cylindrical waveguides containing gyromagnetic media," Journal of the British Institution of Radio Engineers, Vol. 18, No. 10, 597-612, Oct. 1958.
doi:10.1049/jbire.1958.0064

8. Liberal, I., I. S. Nefedov, I. Ederra, R. Gonzalo, and S. A. Tretyakov, "Electromagnetic response and homogenization of grids of ferromagnetic microwires," J. Appl. Phys., Vol. 110, 064909, 2011.
doi:10.1063/1.3631062

9. Polewski, M. and J. Mazur, "Scattering by an array of conducting, lossy dielectric, ferrite and pseudochiral cylinders," Progress In Electromagnetics Research, Vol. 38, 283-310, 2002.
doi:10.2528/PIER02041000

10. Christodoulou, C. G. and J. F. Kauffman, "On the electromagnetic scattering from infinite rectangular grids with finite conductivity," IEEE Trans. on Antennas and Propg., Vol. 34, No. 2, 144-154, Feb. 1986.
doi:10.1109/TAP.1986.1143803

11. Henin, B. H., A. Z. Elsherbeni, and M. H. Al Sharkawy, "Oblique incidence plane wave scattering from an array of circular dielectric cylinder," Progress In Electromagnetics Research, Vol. 68, 261-279, 2007.
doi:10.2528/PIER06083102

12. Belov, P., S. Tretyakov, and A. Viitanen, "Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1153-1170, 2002.
doi:10.1163/156939302X00688

13. Pozar, D. M., Microwave Engineering, 4th Ed., Chapter 9, Wiley-Interscience, New York, 2012.

14. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Norwood, MA, 2003.

15. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley and Sons, 2012.

16. Sang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, John Wiely and Sons, 2000, ISBN 0-471-38799-1.
doi:10.1002/0471224286

17. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover, 1965.

18. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Ed., Academic Press, 2007.