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Analysis of the Generalized Case of Scattering from a Ferromagnetic
Microwire Grid

Tarun Kumar1, *, Natarajan Kalyanasundarama1, and Bhaurao K. Lande2

Abstract—This paper investigates the generalized case of scattering from a planar grid, containing
infinite numbers of axially magnetized ferromagnetic microwires placed parallel to each other in free
space. A semi-analytical solution is obtained by calculating the local field at the surface of the reference
microwire which is the sum of the scattered field from the other microwires as well as the incident
field. Graf’s theorem is used to transform the scattered field from one coordinate system to the other.
Scattering field coefficients for the reference microwire are obtained by matching the tangential field
components at the surface of the reference microwire. Simulated results are expressed in terms of the
Reflection, Transmission and Absorption Coefficients for the TMz and TEz polarizations. For validation,
results of the proposed analysis specialized to the case of normal incidence with TMz polarization are
compared with the results available in the literature.

1. INTRODUCTION

Ferrite materials have been in use for a long time in nonreciprocal microwave passive devices such as
isolators and circulators [13]. There has of late been a renewed interest in Ferrites among the microwave
research community in view of their potential application in wire-based metamaterials (MTMs) [1–3].
The property of ferrite that has been found to be useful for designing wire-based double negative (DNG)
metamaterials using only a single type of element is the occurrence of ferromagnetic resonance (FMR)
inside the ferrite medium due to which the real part of permeability of the ferrite medium becomes
negative beyond FMR frequency [4–7]. Ferromagnetic resonance occurs inside the ferrite medium when
a uniform plane wave propagates inside the ferrite medium with a component of H vector lying in a
plane orthogonal to the direction of applied internal magnetization H0. As a result, the permeability of
ferrite medium becomes a tensor and an extraordinary wave propagation takes place inside the ferrite
medium which leads to ferromagnetic resonance (FMR) at FMR frequency. Consequently, the real part
of effective permeability Re[µe] becomes negative beyond FMR frequency (see Fig. 1) [4–7].

Electromagnetic scattering from a ferromagnetic microwire for the normal incidence case as well
as for the generalized case has been derived by many authors [4–6]. In order to design a metamaterial
with ferromagnetic microwires, one needs to analyze electromagnetic scattering from a well arranged
structure of microwires or nanowires (e.g., wire grid). The problem of two dimensional scattering from
an array of ferrite,conducting and dielectric cylinders has been discussed by many authors in [8–12].
Liberal et al., in [8] discusses the 2-dimensional scattering problem for a ferrite planar grid containing an
infinite number of microwires by using local field method and impedance loaded surface approach. The
solution obtained in [8] is restricted to the far field analysis for a case of normal incidence and transverse
magnetic (TMz) polarization only. In [9], Polewski and Mazur have discussed the 2-dimensional
scattering problem by using iterative scattering procedure for finite number of cylinders for both open
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Figure 1. Real and imaginary parts of the effective permeability for considered ferromagnetic microwire
under consideration (Liberal et al.) [8].

and close problem. In actual practice, the direction and the polarization of the incident wave can be
arbitrary. In order to gain a better insight into the problem, it is required to investigate the generalized
case of scattering for an arbitrary polarization. In this paper, a generalized case of scattering from a
planar ferromagnetic microwire grid is investigated by satisfying the boundary condition at the surface
of the reference microwire which is assumed to be placed along the z-axis. In the proposed analysis, the
sample results are obtained for a microwire grid similar to that considered by Liberal et al. in [8] and
field coefficients for the reference wire are obtained by satisfying the continuity of the tangential field
components at the surface of the microwire. The total incident field (Local field) at the surface of the
reference microwire is the sum of the scattered field components due to the other microwires and the
incident field at the surface of the microwire itself. By using Graf’s theorm, we can easily transform
the scattered field components from the other microwires in terms of the coordinates of the reference
microwire [15–17]. As the grid contains an infinite number of microwires, the summation series will
contain an infinite number of terms in the form of Hankel function of second kind and nth order. The
summation of the series of the Hankel function can be obtained by using Poisson’s summation rule with
the singularity cancellation [12, 14, 18]. By satisfying the tangential boundary condition at the surface of
the reference microwire, field coefficients for the reference microwire are obtained. The field coefficients
obtained in this manner will be the same for each microwire of the grid, irrespective of its position
because each wire is characterized by the same parameters. Once the field coefficients are obtained,
the scattered field in the far zone is calculated in terms of the zero-order propagating floquet mode
and finally, the Reflection, Transmission and Absorption Coefficients are calculated for TMz and TEz

polarizations.

2. FORMULATION OF THE SCATTERED FIELD

The tensor permeability for axially (z-axis) biased ferrite microwire can be represented in matrix form
as [4–6, 13]

µ =

[
µ jκ 0
−jκ µ 0
0 0 µ0

]
, (1)

where

µ = µ0 (1 + χp − jχs) , (2)
κ = µ0 (Kp − jKs) , (3)
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χp =
ω0ωm

(
ω2

0 − ω2
)

+ ω0ωmω2δ2

[
ω2

0 − ω2 (1 + δ2)
]2 + 4ω2

0ω
2δ2

, (4)

χs =
ω0ωmδ

[
ω2

0 + ω2
(
1 + δ2

)]
[
ω2

0 − ω2 (1 + δ2)
]2 + 4ω2

0ω
2δ2

, (5)

Kp =
ω0ωmδ

[
ω2

0 − ω2
(
1 + δ2

)]
[
ω2

0 − ω2 (1 + δ2)
]2 + 4ω2

0ω
2δ2

, (6)

Ks =
2ω0ωmω2δ[

ω2
0 − ω2 (1 + δ2)

]2 + 4ω2
0ω

2δ2
, (7)

where ω0 is the Larmor resonant frequency, ωm the resonant frequency at the saturation limit, δ the
loss factor, and ω the operating frequency. The complex permittivity and effective permebility of the
ferrite medium are respectively given by

εc = ε0 − j
σ

ω
, (8)

µe =
µ2 − κ2

µ
. (9)

As proposed in [8], the microwires of infinite length, each with radius ‘a’ and having applied internal
axial magnetization H0, are placed parallel to each other in y-z plane with the uniform spacing d as
shown in Fig. 2. The reference microwire is assumed to be placed along the z-axis and impinged by
uniform plane wave with polarization angle α0 and incident angle θ0. The z-components of the incident
and scattered fields in context to the reference microwire are given in cylindrical coordinates ρ, φ and
z, respectively by

Einc
z0 (ρ, φ, z) = E0 sin θ0 cosα0

+∞∑
n=−∞

jnJn (βρ0ρ) e−jβzze−jnφ, (10)

H inc
z0 (ρ, φ, z) =

E0

η0
sin θ0 sinα0

+∞∑
n=−∞

jnJn (βρ0ρ) e−jβzze−jnφ, (11)

Es
z0 (ρ, φ, z) = E0 sin θ0

+∞∑
n=−∞

CnH(2)
n (βρ0ρ)e−jβze−jnφ, (12)

Hs
z0 (ρ, φ, z) =

E0

η0
sin θ0

+∞∑
n=−∞

DnH(2)
n (βρ0ρ)e−jβzze−jnφ. (13)

Here βρ0 = β0 sin θ0, βz = β0 cos θ0, β0 = ω
√

µ0ε0, is the free space propagation constant, and η0 =
√

µ0

ε0

is the intrinsic impedance of free space. The superscripts ‘inc’ and ‘s’ denote the incident and the
scattered fields respectively. Jn is the nth order Bessel’s function of the first kind and H

(2)
n the nth

order Hankel’s function of the second kind.
The φ-components for the incident and scattered fields in context to the reference microwire may

be easily deduced from Maxwell’s equations to be

Einc
φ0 (ρ, φ, z)=−E0

n cos θ0cosα0

β0ρ sinθ0

+∞∑
n=−∞

jnJn(βρ0ρ)e−jβze−jnφ+jE0 sinα

+∞∑
n=−∞

jnJ ′n(βρ0ρ)e−jβzze−jnφ, (14)

H inc
φ0 (ρ, φ, z)=−jE0

η0
cosα0

+∞∑
n=−∞

jnJ ′n(βρ0ρ)e−jβze−jnφ−E0

η0

ncosθ0sinα0

β0ρ sin θ0

+∞∑
n=−∞

jnJn(βρ0ρ)e−jβzze−jnφ, (15)

Es
φ0(ρ, φ, z)=−E0

n cos θ0

β0ρ sin θ0

+∞∑
n=−∞

CnH(2)
n (βρ0ρ)e−jβzze−jnφ + jE0

+∞∑
n=−∞

DnH(2)′
n (βρ0ρ)e−jβzze−jnφ, (16)
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Figure 2. Geometry of the scattering problem.

Hs
φ0(ρ, φ, z)=−jE0

η0
sinα0

+∞∑
n=−∞

CnH
(2)′
n (βρ0ρ)e−βzze−jnφ−E0

η0

n cos θ0

β0ρsinθ0

+∞∑
n=−∞

DnH(2)
n (βρ0ρ)e−jβzze−jnφ, (17)

where ′ denotes the first derivative with respect to the argument.
The z-components of the inside field for the reference microwire in cylindrical coordinates ρ, φ and

z are given by [6, 7]

Ed
z0 (ρ, φ, z) = E0

+∞∑
n=−∞

[AnJn(γρ1ρ) + BnJn(γρ2ρ)] e−jβzze−jnφ, (18)

Hd
z0 (ρ, φ, z) = E0

+∞∑
n=−∞

[η1AnJn(γρ1ρ) + η2BnJn(γρ2ρ)] e−jβzze−jnφ, (19)

Ed
φ0 (ρ, φ, z) = E0

+∞∑
n=−∞

[AnX1n (ρ) + BnX2n (ρ)] e−jβzze−jnφ, (20)

Hd
φ0 (ρ, φ, z) = E0

+∞∑
n=−∞

[AnΛ1n (ρ) + BnΛ2n (ρ)] e−jβzze−jnφ, (21)

where

Xin(ρ) =
1
D

(dηiγρi − bγρi) J ′n (γρiρ) +
1
D

jn (eηi − a)
ρ

Jn (γρiρ) , (22)

Λin(ρ) =
1
D

(
aγρi

ωεc

βz
− bγρiηi

)
J ′n (γρiρ)− j

n

Dρ

(
aηi +

bωεc

βz

)
Jn (γρiρ) , (23)

a = jβzβ
2
ρ , (24)
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b = ω2κβzεc, (25)

c1 =
(

β2
ρ −

ω2κ2εc

µ

)
, (26)

d = −jωµc1, (27)
e = ωκβ2

z , (28)

D =
(
ω2κεc

)2 − β4
ρ , (29)

ηi =
−jg1(

γ2
ρi
− f1

) , (30)

g1 =
ωκβzεc

µ
, (31)

f1 =
µ0β

2
ρ

µ
, (32)

γρi =

√
1
2

(
(f1 + c1)±

√
(f1 − c1)

2 + 4d1g1

)
, (33)

d1 =
µ0ωκβz

µ
, (34)

βρ =
√

(ω2µεc − β2
z ). (35)

Here, i takes the suffix ‘1’ or ‘2’ according to the ‘+’ or ‘−’ sign taken inside the square root in (33),
respectively. In order to calculate the contribution of the other microwires to the local field at the
surface of the reference microwire, Graf’s theorem is used to transform the scattered field components
from one set of coordinates to another [15–17]. With the help of this theorem, the scattered field of each
microwire placed in the vicinity of the reference microwire is transformed in terms of the coordinates
of the reference microwire. For example, the scattered field from gth microwire in terms of the ith
microwire can be represented as [11, 15]:

H(2)
n (βρ0ρ)ejnφg =

+∞∑
m=−∞

Jm (βρ0ρ) H
(2)
m−n(βρ0dig)ejmφiej(m−n)φig , (36)

where in case of a planar grid, φig = ±π and dig = ld, where d is the uniform spacing among the
microwires and l the index for the microwires which is an integer. For the reference microwire, l = 0.
The continuity of tangential components of fields at the surface of the reference microwire placed along
the z-axis (ρ = a) translates to

Eloc
z0

+ Es
z0

= Ed
z0

, (37)

H loc
z0

+ Hs
z0

= Hd
z0

, (38)

Eloc
φ0

+ Es
φ0

= Ed
φ0

, (39)

H loc
φ0

+ Hs
φ0

= Hd
φ0

. (40)

where Eloc
z0

,H loc
z0

, Eloc
φ0

and Eloc
φ0

are the local field components at the surface of the reference microwire.
The local field components can be calculated by adding the incident field to the scattered field from the
other microwires at the surface of the reference microwires. For example, The Eloc

z0
components can be

represented as

Eloc
z0

= Einc
z0

+
+∞∑

l=−∞
Es

zl
; l 6= 0. (41)

As the reference microwire divides the complete space into two semi infinite regions, we can change the
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limits of the summation suitably from −∞ ≤ l ≤ +∞ to 1 ≤ l ≤ +∞ as follows

Eloc
z0

= Einc
z0

+ 2
+∞∑

l=1

Es
zl

. (42)

Substituting the values of the field components given by (10)–(21) in (37)–(40) and solving further
leads to the following matrix equation. With the help of this matrix equation, the unknown field
coefficients An, Bn, Cn and Dn can be obtained.




Jn(γρ1a) Jn(γρ2a) − sin θ0Sl0 0
η0η1Jn(γρ1a) η0η2Jn(γρ2a) 0 − sin θ0Sl0

βρ0aX1n(a) βρ0aX2n(a) n cos θ0Sl0 −jβρ0aS′l0
η0βρ0aΛ1n(a) η0βρ0aΛ2n(a) jβρ0aS′l0 n cos θ0Sl0




×




An

Bn

Cn

Dn


=




jn sin θ0 cosαJn(βρ0a)
jn sin θ0 sinαJn(βρ0a)

−jnn cos θ0 cosαJn(βρ0a) + jn+1βρ0a sinαJ ′n(βρ0a)
−jn+1βρ0a cosαJ ′n(βρ0a)− jnn cos θ0 sinαJn(βρ0a)


 , (43)

where

Sl0 = H(2)
n (βρ0ρ) + 2

+∞∑

l=1

Jm (βρ0ρ) H
(2)
m−n(βρ0dig), (44)

and

S′l0 = H ′(2)
n (βρ0ρ) + 2

+∞∑

l=1

J ′m (βρ0ρ) H
(2)
m−n(βρ0dig). (45)

Once the field coefficients are obtained, Eloc
z0

can be calculated with the help of (42). The result will
appear in terms of the summation of the series of Hankel function which can be obtained by using
Poission’s summation rule with the singularity cancellation [12, 14, 18]. Further, if it is assumed that
a ¿ d ¿ λ, the total scattered field of the grid in the far zone can be represented as a propagating zero
order floquet mode [8]. Then the scattered field in the far zone is a plane wave given by

Es
z(x) =

2
βρ0d

e−jβρ0 |x|
+∞∑

n=−∞
jnas

nEloc
z0

, (46)

where, as
n is the scattering field coefficient for the single ferromagnetic microwire given in [6]. After

substituting Eloc
z0

from (42) in (46), the scattered field and hence the Power Reflection, Transmission
and Absorption Coefficients for TMz-polarization can be obtained by

RTM =
∣∣∣∣

Es

Einc

∣∣∣∣
2

, (47)

TTM =
∣∣∣∣1 +

Es

Einc

∣∣∣∣
2

, (48)

ATM = 1−RTM − TTM . (49)

Similarly, the Power Reflection, Transmission and Absorption Coefficients for TEz-polarization can be
obtained by proceeding with the H loc

z0
component.

3. NUMERICAL RESULTS

Since the radius-to-wavelength ratio at the maximum operating frequency (15GHz) for the microwire
under consideration is only 1.5 × 10−4, the azimuthal dependence of scattered field may be neglected
without any significant loss in accuracy. Thus only the term, n = 0, in the expansions for the
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inside and the scattered field makes the significant contribution. The sample results are obtained
for a planar grid containing ‘Co’ based ferrite microwires of the following specifications as considered
in [8]: radius, a = 1 µm, spacing, d = 3mm, conductivity, σ = 6.7 × 105 S/m, gyromagnetic ratio,
γ = 2 × 1011 T−1s−1, saturation magnetization, µ0Ms = 0.55T, loss factor, α = 0.02, internal
magnetization, H0 = 113.45 kA/m along the z-coordinate and an operating frequency band of 5–15 GHz
is assumed. Simulation results are plotted for the Reflection, Transmission and Absorption Coefficient
against the operating frequency and the incident angle θ0 for two different polarization angles α0 = 0◦
and 90◦ (i.e., TMz and TEz polarizations respectively).

3.1. TMz Polarization (α0 = 0◦)

Figure 3 shows the simulation results plotted for the magnitudes of the Reflection, Transmission and
Absorption Coefficients for a polarization angle of α0 = 0◦. In this case, the incident wave is TMz

polarized, and the H vector of the incident wave is in a plane normal to the axis of the wire (i.e.,
z-axis). It results in an extraordinary wave propagation inside the ferrite medium, and thus there is
a Ferromagnetic resonance (FMR) inside the ferrite medium at the FMR frequency. The scattering
behavior of the grid may conveniently be explained with the help of the scattering behavior of the

(a)

(b)

(c)

Figure 3. (a) Magnitude of the Reflection
Coefficient, (b) magnitude of the Transmission
Coefficient, (c) magnitude of the Absorption
Coefficient, for a polarization angle of α0 = 0◦
(i.e., TMz polarization).

(a)

(b)

(c)

Figure 4. (a) Magnitude of the Reflection
Coefficient, (b) magnitude of the Transmission
Coefficient, (c) magnitude of the Absorption
Coefficient, for a polarization angle of α0 = 90◦
(i.e., TEz polarization).
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single microwire as explained in [4] in terms of two frequency-ranges containing frequencies below and
above FMR where Re[µe] > 0 and Re[µe] < 0, respectively. For frequencies below FMR, Re[µe] > 0
as shown in Fig. 1, the medium inside the microwire behaves similar to lossy dielectric and thus the
scattering is weak. However, for frequencies above FMR, Re[µe] < 0. As a result, the imaginary part
of the propagation constant (phase constant) of ferrite medium becomes negative. Consequently, the
microwire supports only evanescent field inside, and the microwire essentially behaves like a plasma
region giving rise to increased scattering. In other words, there is a remarkable difference in the
scattering behavior of the single microwire for the frequencies below and above FMR. Now, in case
of a microwire grid, the difference in the magnitudes of the scattered fields for the frequencies below
and above FMR is not so much well pronounced as in the case of a single microwire. This is due
to the contribution to the scattered field made by the microwires other than the reference microwire.
The magnitude of the Reflection and Absorption coefficient for small angle of incidence (say θ0→10◦)
turns out to be very small because of the low values of the tangential field components (Fig. 3(a) and
Fig. 3(c)). As a result, plasma-like behavior of ferrite microwire beyond FMR is compensated by the
low values of the tangential field components. On account of the decreased magnitude of the Reflection
and Absorption coefficients, the magnitude of the Transmission coefficient is increased.

(a)

(b)

(c)

Figure 5. Comparison of the results for normal incidence and TMz Polarization; (a) Magnitude of the
Reflection Coefficient. (b) Magnitude of the Transmission Coefficient. (c) Magnitude of the Absorption
Coefficient, with the results obtained by Liberal et al. [8].
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3.2. TEz Polarization (α0 = 90◦)

Figure 4 shows the simulation results plotted for the magnitudes of the Reflection, Transmission and
Absorption coefficients for a polarization angle of α0 = 90◦, i.e., TEz polarization. In this case, the
H vector of the incident wave is in a plane along the wire (i.e., z-axis), i.e., parallel to the internal
magnetization. Hence, an ordinary wave propagation takes place inside the ferrite medium. In this case,
the ferrite medium behaves like a lossy dielectric medium which results in a very weak scattered field.
Due to the ordinary wave propagation inside the ferrite medium, there is no effect of ferromagnetic
resonance observed on the results of Reflection, Transmission and Absorption Coefficients (Fig. 4).
Further, it is to be noticed from Fig. 4 that the magnitude of the Reflection and Absorption Coefficients
increases with frequency. This is due to the fact that the skin depth decreases with an increment in
frequency and it results in the decrement of the Transmitted field, which is further compensated by the
increment in the magnitude of the Reflection and Absorption Coefficients.

4. COMPARISON OF THE RESULTS

In this section, a comparative remark is made upon the results available in [8] and the results obtained by
the proposed analysis specialized to the case of normal incidence and TMz Polarization (i.e., α0 = 0◦).
Fig. 5 shows the comparison of the results in terms of the Reflection, Transmission and Absorption
Coefficients for the microwire of radius, a = 1µm and spacing, d = 3mm. It is to be noticed from
Fig. 5 that the results of the proposed analysis specialized to the case of normal incidence and TMz

polarization perfectly reduces to the results obtained by Liberal et al. in [8]. This proves that the
analysis given in [8] is a special case of the proposed analysis.

5. CONCLUSION

A generalized approach for the analysis of electromagnetic scattering from a ferromagnetic microwire
grid is presented for both TMz and TEz polarizations in this paper. The derivation of the field
coefficients and hence the magnitude of the scattered fields is carried out by using the tangential
boundary condition at the surface of the reference microwire. Simulated results are presented for two
different polarization angles, α = 0◦ and 90◦ (i.e., TMz and TEz polarizations respectively). The results
of the proposed analysis specialized to the case of normal incidence and TMz polarization reduces to
the results obtained by Liberal et al. in [8]. Hence, it is shown that the proposed analysis is the most
generalized case of the scattering from a ferromagnetic microwire grid containing an infinite numbers
of microwires. The next step in this approach could be the case of a grid containing finite number
of wires. It is expected that the present analysis may find an application in the design of wire based
metamaterials.
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