Vol. 58
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-01-20
Optimization of a Dual Ring Antenna by Means of Artificial Neural Network
By
Progress In Electromagnetics Research B, Vol. 58, 59-69, 2014
Abstract
In literature, heuristic algorithms have been successfully applied to a number of electromagnetic problems. The associated cost functions are commonly linked to full-wave analysis, leading to complexity and high computational expense. Artificial Neural Network is one of the most effective biological inspired techniques. In this article, an efficient surrogate model is trained to replace the full-wave analysis in optimizing the bandwidth of microstrip antenna. The numerical comparison between ANN substitution model and full-wave characterization shows significant improvements in time convergence and computational cost. To verify the robustness of this approach, all these concepts are integrated into a case study represented by a rectangular ring antenna with proximity-coupled feed antenna.
Citation
Linh Ho Manh, Francesco Grimaccia, Marco Mussetta, and Riccardo Enrico Zich, "Optimization of a Dual Ring Antenna by Means of Artificial Neural Network," Progress In Electromagnetics Research B, Vol. 58, 59-69, 2014.
doi:10.2528/PIERB13112806
References

1. Bahl, I. J., S. S. Stuchly, and M. A. Stuchly, "A new microstrip radiator for medical applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 28, No. 12, 1464-1469, Dec. 1980.
doi:10.1109/TMTT.1980.1130268

2. Batchelor, J. C. and R. J. Langley, "Microstrip ring antennas operating at higher order modes for mobile communications," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 142, No. 2, 151-155, Apr. 1995.
doi:10.1049/ip-map:19951826

3. Pirinoli, P., G. Vecchi, and M. Orefice, "Full-wave spectral analysis and design of annular patch antenna with electromagnetically coupled microstrip feed line," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2415-2423, Sep. 2004.
doi:10.1109/TAP.2004.834019

4. Gandelli, A., F. Grimaccia, M. Mussetta, P. Pirinoli, and R. E. Zich, "Genetical swarm optimization: An evolutionary algorithm for antenna design," Journal of Automatika, Vol. 47, No. 3-4, 105-112, 2006.

5. Selleri, S., M. Mussetta, P. Pirinoli, R. E. Zich, and L. Matekovits, "Some insight over new variations of the particle swarm optimization method," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 235-238, Dec. 2006.
doi:10.1109/LAWP.2006.874071

6. Matekovits, L., M. Mussetta, P. Pirinoli, S. Selleri, and R. E. Zich, "Improved PSO algorithms for electromagnetic optimization," Antennas and Propagation Society International Symposium, 33-36, 2005.

7. Zich, R. E., M. Mussetta, F. Grimaccia, A. Gandelli, H. M. Linh, G. Agoletti, M. Bertarini, L. Combi, P. F. Scaramuzzino, and A. Serboli, "Comparison of different optimization techniques in microstrip filter design," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 549-552, May 21-24, 2012.

8. Manh, H. L., M. Mussetta, F. Grimaccia, and R. E. Zich, "Differentiated Meta-PSO for rectangular ring antenna with proximity coupled feed," Antennas and Propagation Society International Symposium, 640-641, Orlando, FL, 2013.

9. Robustillo, P., J. A. Encinar, and J. Zapata, "ANN element characterization for reflectarray antenna optimization," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 957-960, Apr. 11-15, 2011.

10. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

11. Caputo, D., A. Pirisi, M. Mussetta, A. Freni, P. Pirinoli, and R. E. Zich, "Neural network characterization of microstrip patches for reflectarray optimization," 3rd European Conference on Antennas and Propagation, EuCAP 2009, 2520-2522, Mar. 23-27, 2009.

12. Washington, G., "Aperture antenna shape prediction by feedforward neural networks," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 4, 683-688, Apr. 1997.
doi:10.1109/8.564094

13. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

14. Selleri, S., M. Mussetta, P. Pirinoli, R. E. Zich, and L. Matekovits, "Differentiated Meta-PSO methods for array optimization," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 67-75, Jan. 2008.
doi:10.1109/TAP.2007.912942

15. Luo, M. and K.-M. Huang, "Prediction of the electromagnetic field in metallic enclosures using artificial neural networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011.

16. Zhang, Y. and L. Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

17. Nesil, S., F. Gunes, and U. Ozkaya, "Phase characterization of a reflectarray unit cell with Minkowski shape radiating element using multilayer perceptron neural network," 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), II-219-II-222, Dec. 1-4, 2011.

18. Thiruvalar Selvan, P. and S. Raghavan, "Neural model for circular-shaped microshield and conductor-backed coplanar waveguide," Progress In Electromagnetics Research M, Vol. 8, 119-129, 2009.
doi:10.2528/PIERM09062903

19. De Vita, P., F. De Vita, A. Di Maria, and A. Freni, "An efficient technique for the analysis of large multilayered printed arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 104-107, 2009.
doi:10.1109/LAWP.2008.2012176

20. Yu, H. and B. M. Wilamowski, "Levenberg-Marquardt training," Industrial Electronics Handbook, Volume 5 --- Intelligent Systems, 2nd edition, Chapter 12, 12-1-12-15, CRC Press, 2011.

21. Cho, S.-W. and J.-H. Lee, "Efficient implementation of the capon beamforming using the Levenberg-Marquardt scheme for two dimensional AOA estimation," Progress In Electromagnetics Research, Vol. 137, 19-34, 2013.
doi:10.2528/PIER12122711