1. Ji, W. J. and C. M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101
2. Li, Z.-X., "Bistatic scattering from rough dielectric soil surface with a conducting object with arbitrary closed contour partially buried by using the FBM/SAA method," Progress In Electromagnetics Research, Vol. 76, 253-274, 2007.
doi:10.2528/PIER07071501
3. Barka, A. and P. Caudrillier, "Domain decomposition method based on generalized scattering matrix for installed performance of antennas on aircraft," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1833-1842, 2007.
doi:10.1109/TAP.2007.898602
4. Wang, R., L. Guo, J. Li, and X. Liu, "Investigation on transient electromagnetic scattering from a randomly rough surface and the perfect electric conductor target with an arbitrary cross section above it ," Science in China, Series G: Physics, Mechanics and Astronomy, Vol. 52, 665-675, 2009.
doi:10.1007/s11433-009-0043-z
5. Li, J., L. X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104
6. Botha, M. M. and D. B. Davidson, "Rigorous, auxiliary variable-based implementation of a second-order ABC for the vector FEM," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3499-3504, 2006.
doi:10.1109/TAP.2006.884300
7. Zhai, Y. B., X. W. Ping, and T. J. Cui, "Scattering from complex bodies of revolution using a high-order mixed ¯nite element method and locally-conformal perfectly matched layer," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1761-1764, 2011.
doi:10.1109/TAP.2011.2122224
8. Liu, P. and Y.-Q. Jin, "Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1205-1210, 2004.
doi:10.1109/TAP.2004.827497
9. Ozgun, O. , "Monte Carlo-based characteristic basis finite element method (MC-CBFEM) for numerical analysis of scattering from objects on/above rough sea surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 3, 769-783, 2012.
doi:10.1109/TGRS.2011.2162650
10. Chen, Y., S. Yang, S. He, and Z. Nie, "Fast analysis of microstrip antennas over a frequency band using an accurate MoM matrix interpolation technique," Progress In Electromagnetics Research, Vol. 109, 301-324, 2010.
doi:10.2528/PIER10081107
11. Alavikia, B. and O. M. Ramahi, "Electromagnetic scattering from cylindrical objects above a conductive surface using a hybrid ¯niteelement-surface integral equation method," Journal of the Optical Society of America A: Optics and Image Science, and Vision, Vol. 28, 2510-2518, 2011.
doi:10.1364/JOSAA.28.002510
12. Cui, Z. W., Y. P. Han, C. Y. Li, and W. J. Zhao, "Cui, Z. W., Y. P. Han, C. Y. Li, and W. J. Zhao, E±cient analysis of scattering from multiple 3-D cavities by means of a FE-BI-DDM method," Progress In Electromagnetics Research, Vol. 116, 425-439, 2011.
13. Li, J., L. X. Guo, Q. He, and B. Wei, "Electromagnetic scattering from randomly rough surfaces with hybrid FEM/BIE," Chinese Physics Letters, Vol. 28, 104101-1-104101-4, 2011.
14. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of BCGSTAB with multifrontal algorithm to solve FEBI-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604
15. Thorsos, E. I., "The validity of the Kirchho® approximation for rough surface scattering using a Gaussian roughness spectrum," Journal of the Acoustical Society of America, Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188
16. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley, 2002.