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Analysis of Scattering from Dielectric Rough Surfaces
by Hybrid FEM/BIE

Runwen Xu*, Lixin Guo, and Xiao Meng

Abstract—To study electromagnetic scattering from dielectric rough surfaces, a hybrid finite element
method (FEM) combined with boundary integral equations (BIE) is extended to the scattering problem
with two half-open regions. Integral boundaries, as truncated boundaries of the FEM region, are
employed as artificial boundaries of dielectric rough surfaces above and below the rough surface. In
the hybrid method, conformal integral boundaries are introduced to reduce the computational region.
The validity of our hybrid method is examined by available solutions got from the method of moment
(MoM), which indicates the feasibility of our scheme in simulating the scattering from dielectric rough
surfaces. Bistatic scattering coefficient from dielectric rough surfaces is studied in this paper for both
polarizations, and functional dependence upon different parameters are numerically discussed.

1. INTRODUCTION

The scattering from random rough surfaces has been a topic of continuing interest for many years
due to its broad applications, such as remote sensing, target detection, material science, oceanography,
academic applications, etc. Some numerical methods have been developed, such as the method of
moment (MoM) [1], the forward backward method (FBM) [2], the finite element method (FEM) [3], and
others in the frequency domain, while time domain integral equation (TDIE) [4] and finite difference time
domain method (FDTD) [5] are widely used in the time domain. The boundary integral methods can
take the Sommerfeld radiation condition into account by the adoption of a proper Green function, and
these methods can be seen as the most precise numerical methods. However, boundary integral methods
are hardly applied to electromagnetic problems consisting of inhomogeneous complex structures. On the
other hand, the finite element method is one of the most appealing numerical methods for the analysis of
electromagnetic problems, especially for complex dielectric structures. In an unbounded computational
region, approximate absorbing boundaries are always applied for truncated boundaries, and most works
are focused on targets of a limited size or conducting rough surfaces, such as absorbing boundary
condition (ABC) [6] and perfectly matched layer (PML) [7]. Liu and Jin introduced FEM/PML in [8]
to discuss the scattering from a rough surface, and they studied bistatic scattering from a target at the
low altitude above a conducting rough sea surface. Monte Carlo-based characteristic basis finite element
method (MC-CBFEM) [9] is employed by Ozgun to study the scattering from an object on/above a
rough sea surface assumed that the rough sea is approximated as a conducting medium. However, these
approximation absorbing boundaries often need to be set far enough away from the model surface or
only limited to some particular problems, which leads to unexpected precision.

To overcome shortcomings of the traditional FEM and the boundary integral method, a hybrid
FEM/BIE method is introduced to keep the advantages of two numerical methods. A hybrid method
based on the volume-surface integral equation (VSIE) and the impedance matrix interpolation technique
is presented in [10] for the fast analysis of microstrip antennas in frequency sweeps. Alavikia and Ramahi
applied a hybrid finite element method combined with the surface integral equation method [11] to study
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electromagnetic scattering from cylindrical objects above a conductive plane surface. A finite element-
boundary integral-domain decomposition method is presented in [12] for analyzing electromagnetic
scattering problems involving multiple cavities. Hybrid FEM/BIE is presented by Li et al. in [13]
to study electromagnetic scattering from a perfectly electric conducting (PEC) rough surface. The
hybrid finite-element/boundary-integral method (FEBI) combined with the multilevel fast multipole
algorithm (MLFMA) has been applied in [14] to model scattering problems of inhomogeneous media.
The hybrid FEM/BIE can not only deal with scattering problems of dielectric models easier than MoM,
but also reduce the computation region and maintain higher precision compared with applications of
approximate absorbing boundaries. Although the studies on scattering problems of rough surfaces have
been developed for decades, numerical simulations with FEM for dielectric rough surfaces still need to
be made a further study.

Compared with published papers, a hybrid FEM/BIE is extended into the scattering problem of
dielectric rough surfaces, and conformal integral boundaries are developed. Unlike the PEC rough
surface, the space is divided into two domains by dielectric rough surface. In the past, the rough surface
are usually assumed as a PEC model [8, 9] when FEM is applied to simulate the scattering problem.
Based on [13], FEM/BIE is extended into the scattering from the dielectric model. In the hybrid
method, conformal integral boundaries are applied in the space to truncate the infinite computational
region of a rough surface, while FEM is used to simulate the electromagnetic scattering problem in
the interior region. To couple scattering systems between the interior region and the exterior region,
continuity conditions are applied on integral boundaries. The validity of this hybrid method is examined
by available solutions of MoM.

2. FORMULATIONS AND EQUATIONS

The two-dimensional model of our interest is depicted in Figure 1, and theoretical formulas of scattering
from dielectric rough surfaces are deduced in this section. The incident wave impinges on one-
dimensional dielectric rough surface with an incidence angle θinc and an scattering angle θscat defined as
in Figure 1. For the problem with two half-open computational regions, artificial boundaries should be
not only built above rough surfaces, but also set below rough surfaces in the implementation of FEM.
Artificial boundaries ΓUBIE and ΓDBIE split computational domain into the upper region Ωup , interior
region Ωin , and the region below a rough surface Ωdown . Unlike truncated boundaries of PML, the shape
of artificial integral boundaries in FEM/BIE is arbitrary which has a little influence on calculational
results, and can be set even on the surface of a model. To reduce the computational region as possible
as we can, an integral boundary ΓUBIE in the upper space Ωup is set on the profile of a rough surface,
and an artificial boundary ΓDBIE is built at a height of 0.1λ with a conformal profile below the rough
surface to enclose the whole model.
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Figure 1. Geometry of scattering from a dielectric rough surface.

For each realization of the Monte Carlo method, one-dimensional random rough surface can be
generated by a corresponding power spectrum. In this paper, Gaussian rough surfaces are chosen to
study, whose power spectrum function can be written as follows

S(ki) =
δ2l

2
√

π
exp

(−k2
i l

2/4
)

(1)

where δ denotes the root mean square height (rms), and l represents the correlation length (lc).
Rough surfaces should be truncated into a finite computational domain in our discussion, which

can introduce artificial reflection. To reduce computational error caused by the truncation effect, an
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incident wave used here is taper incident wave, which is proposed by Thorsos [15], and can be expressed
as

Φinc = exp [−jk · r(1 + w(r))] · exp
[−(x− y · cot θinc)2

/
g2

]
(2)

where k denotes the wave number, g the tapered factor of an incident wave, r a position vector of the
observation point in the space, and

w(r) = exp
[
2 (x− y · cot θinc)

2 /g2 − 1
]
/(kg · sin θinc)2 (3)

For both transverse electric (TE) polarization (where the electric field has a component only along
axis z) and transverse magnetic (TM) polarization (where the magnetic field has a component only
along axis z), total fields in the space are governed by the Helmholtz equation

[
∂

∂x

(
1
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∂
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)
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∂

∂y

(
1
ρ

∂
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)
+ β

]
Φ(r) = f(r) (4)

in which Φ(r) denotes the total field. For TE case

ρ = µr

β = k2
0εr

f(r) = jk0Z0Jz(r)



 (5)

For the TM case
ρ = εr

β = k2
0µr

f(r) = −1
ρ

[∇× J (r)]z





(6)

where [∇× J(r)]z = [∇× J(r)] · ẑ; k0 is the wavenumber of the free space; Z0 denotes the characteristic
impedance; J(r) represents the current density existing in the space, and it induces the tapered incident
wave; εr = ε′r − jε′′r is the permittivity; µr is the permeability of the computational space.

On artificial surfaces ΓUBIE and ΓDBIE , boundary conditions can be assumed as follows for
simplification:

1
ρ

∂Φ
∂n

∣∣∣∣
ΓUBIE or ΓDBIE

= −ψ (7)

where ∂/∂n is the corresponding normal derivative of ΓUBIE or ΓDBIE . Based on the published work,
the scattering problem in the interior domain Ωin can be solved by the functional analysis [16], whose
equivalent variational problem can be given by

δF (Φ) = 0 (8)

where

F (Φ)=
1
2

∫∫

Ωin

[
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]
dΩ−

∫∫

Ωin

fΦdΩ+
∫

ΓUBIE

ΦψUdΓ+
∫

ΓDBIE

ΦψDdΓ (9)

In the above functional equation, for TE case, ρ = µr, υ = εr; for TM case, ρ = εr, υ = µr. In the
finite domain Ωin , the part

∫∫
Ωin

fΦdΩ can be removed because there is no current in this region.
In order to obtain integral equations of Φ(r) in regions Ωup and Ωdown , the Green’s function in the

space G(r, r′) needs to be introduced, which can be written as

G(r, r′) =
1
4j

H2
0

(
k

∣∣r− r′
∣∣) (10)

where k = k0
√

εrµr is the wavenumber of the computational space. The Sommerfeld radiation boundary
condition is satisfied automatically above or below a rough surface, and the following differential equation
can also be satisfied above or below the rough surface

∇2G(r, r′) + k2G(r, r′) = −δ(r− r′) r′ ∈ Ω∞ (11)
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In the region above the rough surface, there is an incidence source existing in the space. Combining
Eqs. (4), (11) with the Green’s scalar theorem, we have

Φ(r′) =
∫

ΓRs

[
Φ(r)

∂GU (r, r′)
∂nU

−GU (r, r′)
∂Φ(r)
∂nU

]
dΓ +

∫

Γ∞

[
Φ(r)

∂GU (r, r′)
∂nU

−GU (r, r′)
∂Φ(r)
∂nU

]
dΓ

−
∫∫

Ωup

[
GU (r, r′)f(r)

]
dΩ (12)

where ΓRs is the truncated domain of a rough surface; Γ∞ includes the infinite boundary above a rough
surface, the right part of a rough surface which overflows from the truncated domain ΓRs, and the left
part of a rough surface which overflows from the truncated domain ΓRs. On the infinite boundary above
the rough surface of Γ∞, both Φ(r) and GU (r, r′) satisfy the Sommerfeld radiation conditions, and the
incident fields on the parts of the rough surface which overflow from the truncated domain ΓRs are
almost zero due to the adoption of the tapered incident wave. So the right second boundary integral
can be removed. When r′ approach ΓUBIE infinitely in the domain Ωup , the boundary integral equation
on ΓUBIE can be obtained

Φinc
(
r′

)
= Φ

(
r′

)−
∫

ΓUBIE

[
Φ(r)

∂GU (r, r′)
∂nU

−GU (r, r′)
∂

∂nU
Φ(r)

]
dΓ (13)

where Φinc(r′) = − ∫∫
Ωup

[GU (r, r′)f(r)]dΩ denotes the incident tapered wave induced by the current in
the space.

As formula deductions in the region Ωup , the total field Φ(r) and the Green’s function GD(r, r′) in
the region Ωdown can also satisfy Eqs. (4) and (11), respectively. Unlike in the region Ωup , there is no
source in the region Ωdown , so the part about the source f(r) in Eq. (4) can be removed. The integral
equation on the boundary ΓDBIE can be written as

0 = Φ
(
r′

)−
∫

ΓDBIE

[
Φ(r)

∂GD(r, r′)
∂nD

−GD(r, r′)
∂

∂nD
Φ(r)

]
dΓ (14)

Integral equations Eqs. (13) and (14) provide relationships between the electromagnetic field Φ and
their normal derivative ∂Φ(r)/∂n on integral boundaries ΓUBIE and ΓDBIE .

To couple the FEM and BIE systems, continuous conditions are applied on artificial boundaries
ΓUBIE and ΓDBIE , which can be written as

Φ|Γ+
= Φ|Γ− (15)

1
ρ+

∂Φ
∂n

∣∣∣∣
Γ+

=
1
ρ−

∂Φ
∂n

∣∣∣∣
Γ−

(16)

where ∂/∂n is a corresponding normal derivative of ΓUBIE or ΓDBIE , and Γ+ expresses the observation
point approaching the integral boundary of ΓUBIE or ΓDBIE from the exterior region, while Γ− denotes
the observation point approaching the integral boundary of ΓUBIE or ΓDBIE from the interior region.
For TE case, ρ = µr, υ = εr, and for TM case, ρ = εr, υ = µr. The total field and its normal derivative
between the FEM region and the exterior region can be contacted by Eqs. (15) and (16).

Choosing linear interpolating functions as in [16] to discretize unknowns, unknowns in Eqs. (8), (13)
and (14) can be written as

Φe (r) =
3∑

i=1

N e
i Φe

i (17)

Φs (r) =
2∑

i=1

N s
i Φs

i (18)

ψs (r) =
2∑

i=1

N s
i ψs

i (19)
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where Φ denotes the electromagnetic field and ψ the normal derivative ∂Φ(r)/∂n. The superscript e
denotes the surface element and s the boundary element. Substituting Eqs. (17)–(19) into Eqs. (8), (13)
and (14), coupled systems can be expanded to a weak form as the following linear matrix equation

[KII KIU KID

KUI KUU 0
KDI 0 KDD

]{ ΦI

ψU

ψD

}
=

{ 0
bU

0

}
(20)

In the coupled system Eq. (20), element matrices of KII, KIU, KID, KUI, KUU, KDI, KDD and bU

are given as
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∫∫
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[KIU] =
∫

ΓUBIE

{N e}{
N e

j

}T
dΓ (22)

[KID] =
∫

ΓDBIE

{N e}{
N e

j

}T
dΓ (23)

[KUI] = [KIU]T −
∫

Γs
UBIE

[
{N s}

∫

Γt
UBIE

{
N t

}T ∂GU

∂n′U
dΓ′

]
dΓ (24)
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[KDD] = −
∫

Γs
DBIE

[
{N s}

∫

Γt
DBIE

{
N t

}T
GDdΓ′

]
dΓ (27)

{bU} =
∫

Γs
UBIE

{N s}ΦincdΓ (28)

where Φ denotes the matrix element of the electromagnetic field on nodes and ψ the matrix element
about the normal derivative of the field on nodes. I denotes nodes of surface elements in the region
Ωin including nodes on ΓUBIE and ΓDBIE , U the nodal points on the integral boundary ΓUBIE , D the
unknowns on the artificial boundary ΓDBIE , e the surface element, and s and t express the boundary
elements. By using a direct linear system solver, values of the total field and its derivative on every
point can be calculated, and then the bistatic scattering coefficient (BSC) for a tapered wave incidence
can be calculated by the following equation

BSC = lim
r→∞ 2πr

∣∣Φscat
∣∣2

Pinc
(29)

where

Pinc =
√

π

2
g sin θinc

(
1− 1 + 2 cot2 θinc

2 (k0g · sin θinc)
2

)
(30)

3. PROCEDURE AND CODE VALIDATIONS

In this section, the bistatic scattering from dielectric rough surfaces under TE and TM cases are
studied. Due to the randomness of rough surfaces, 30 samples of rough surfaces are chosen to average
their electromagnetic fields to get a stable result. The edge size of discrete elements is about 0.05λ,
the length of a rough surface L 25.6λ, the taper factor g = L/4, and the other parameters such as the
incident angle θinc , the permittivity εr of rough surfaces, the root mean square height rms, and the
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correlation length lc are all given in the following figures. Combined with the sparse matrix algorithms,
the complex sparse system of linear equations can be solved by Gaussian elimination.

To explore the validation of our FEM/BIE theory, the FEM/BIE codes are firstly examined by
available solutions of MoM. Figure 2 gives comparative results of BSC with those of MoM in (a) and (b).
Table 1 shows the comparisons of time and the number of nodes between two methods.

As shown in Figure 2, it is obvious that two different methods are in good agreement with each
other for TE and TM cases, which not only assures the validation of our scheme, but also indicates the
feasibility of our scheme in solving a scattering problem of dielectric rough surfaces. The differences
between FEM/BIE and MoM are largely caused by the choice of grid size, the basic functions, as well
as approximations in our programming. Due to FEM/BIE based on differential equations, increasing
the mesh density or using higher order basis functions can lead to improving the accuracy of FEM/BIE.

To make a further verification on hybrid FEM/BIE, Figure 3 and Table 2 give other comparative
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Figure 2. BSC from dielectric Gaussian rough surfaces: (a) TE case, (b) TM case.
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Table 1. Comparison of time and the number of
nodes between two different method (one sample).

Polarization Method
Time
(s)

Number
of nodes

TM
MoM 4.63 512

FEM/BIE 14.49 1052

TE
MoM 4.77 512

FEM/BIE 35.47 1052

Table 2. Comparison of time and the number of
nodes between two different method (one sample).

Polarization Method
Time
(s)

Number
of nodes

TM
MoM 3.34 518

FEM/BIE 4.76 1054

TE
MoM 3.37 518

FEM/BIE 34.51 1054
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results between FEM/BIE and MoM. Parameters of our model in Figure 2 are changed in this simulation
to make a comparison, and the rough surface in this simulation has a larger rms value than that of
Figure 2. In Figure 3, the well-matched results for both TE and TM cases in two simulations guarantee
the feasibility of FEM/BIE again.

The hybrid method is versatile for different parameters of the rough surface. The shape of the
artificial boundaries changes with the profile of the rough surface, and this measure can reduce the
computational domain. Unlike traditional FEM based on PML or ABC, the shape of artificial boundaries
have a little influence on results and can be set even on the surface of a model. Although this method
can obtain an exact result, the number of unknowns and consumed time of hybrid FEM/BIE are more
than those of MoM in above two simulations, because a mass of unavoidable meshes are created not only
on its boundaries but also in the FEM domain in the simulation of FEM/BIE, whereas for MoM only the
boundary of the rough surface need to be discretized. However, the memory consumed in simulations
is less than that of traditional FEM based on ABC or PML, because our boundary is set only one layer
of meshes far from the model surface. Although requiring more computer resource and time compared
with MoM, hybrid FEM/BIE is a more appealing numerical method to deal with complex problems
with an inhomogeneous medium because the problems about an inhomogeneous medium are hardly
solved by the classical MoM, such as multilayer structures, inhomogeneous objects, and some buried
targets exist below a ground.

4. RESULTS AND DISCUSSIONS

In the following, scattering characteristics of dielectric rough surfaces are mainly discussed by our hybrid
method. Results of BSC with different incident angles are plotted in Figure 4 under TE case and TM
case. It is found that peak values which correspond to main coherent components appear near specular
angles for both TE case and TM case. With the decrease of incident angle θinc , the width of the
specular peak broadens, and the peak value for TE case slightly increases, while the peak value for TM
case decreases in the specular direction.
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Figure 4. BSC of dielectric rough surfaces with different θinc : (a) TE case, (b) TM case.

Figure 5 illustrates results of BSC from dielectric Gaussian rough surfaces for different rms under
TE case and TM case. With rms increasing, it is easily observed that incoherent components of the
scattering field become larger in non-specular directions for both TE and TM cases. As rms is related
to the degree of the roughness, rough surfaces become rougher with increasing rms, which can lead to
an increase of the diffuse reflection and the reflection of energy in the non-specular directions.

Electromagnetic scattering from dielectric random rough surfaces with different correlation lengths
lc is examined in Figure 6. In numerical simulations, it can be concluded from the comparisons in
Figures 6(a) and (b) that the curves are higher near the specular direction and lower in other directions
with the correlation length increasing for TE and TM cases. Whens rms keeps constant, the ground
roughness increases with the correlation length decreasing. As a result, the root mean square slope of
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Figure 5. BSC of dielectric rough surfaces of different rms: (a) TE case, (b) TM case.
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Figure 6. BSC of rough surfaces with different correlation lengths lc: (a) TE case, (b) TM case.
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Figure 7. BSC of dielectric rough surfaces with different ε′r: (a) TE case, (b) TM case.

the rough surface will increase. Consequently, the scattered energy is more widely distributed in all
directions due to the increase of the diffuse reflection when the root mean square slope becomes larger.

Bistatic scattering depending on different real parts of the permittivity ε′r of dielectric rough surfaces
is plotted in Figures 7(a) and (b) for different polarizations. From numerical results in Figure 7, it can
be seen that BSC becomes large with the increase of ε′r for TE and TM cases. This phenomenon can be
explained by the theory of reflected coefficient, and the reflected coefficient has a rise when ε′r increases.



Progress In Electromagnetics Research M, Vol. 34, 2014 115

0 20 40 60 80 100 120 140 160 180

 

 

0 20 40 60 80 100 120 140 160 180

 

 

incθ     =π/3

ε  =(4.0, -2.0)r

rms=0.05λ

cl   =0.35λ

ε  =(2.0, -2.0)r

ε  =(6.0, -2.0)r incθ     =π/3

rms=0.05λ

cl   =0.35λ

ε  =(4.0, -15.0)r

ε  =(4.0, -2.0)r

ε  =(4.0,-30.0)r

(a) (b)
Scattering angle (deg) Scattering angle (deg)

-50

-40

-30

-20

-10

0

10

B
S

C
 (

dB
) 

-40

-30

-20

-10

0

10

B
S

C
 (

dB
) 

Figure 8. BSC of dielectric rough surfaces with different ε′′r : (a) TE case, (b) TM case.

Finally, electromagnetic scattering with different imaginary parts of the permittivity ε′′r is studied
in Figure 8. With ε′′r increasing, the scattering coefficient increases, and BSC of the dielectric rough
surface has a slightly increase when ε′′r increases to some extent. As ε′′r increases, materials of rough
surfaces tend to be a perfectly electric conducting medium. As a result, there is a rise in the scattering
coefficient for TE and TM cases when ε′′r increases, and numerical results approach stability with the
increase of ε′′r .

5. CONCLUSIONS

A hybrid FEM/BIE is extended in this paper to study the scattering from dielectric random rough
surfaces. Rough surfaces are usually assumed as PEC models in published papers when FEM is
applied in the simulation. However, real rough surfaces, such as the ground and the sea, are usually
dielectric models. In our hybrid method, conformal integral boundaries are built to truncate the infinite
computational region, which can reduce the number of unknowns compared with traditional FEM based
on PML or ABC. This hybrid method is versatile and exact in the numerical simulation of dielectric
rough surfaces, and can be extended to the problem of an inhomogeneous model easily compared to
MoM. Unfortunately, this method needs more time and memory than those of MoM because a mass of
unavoidable meshes are generated in FEM domain. In our future work, this topic will be investigated
in detail, with focus on scattering from two-dimensional randomly rough surfaces using the FEM/BIE
algorithm, the improvement in computational time and memory of the hybrid method, and applications
of FEM/BIE for the inhomogeneous models.
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