Vol. 144
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-01-13
Design of Polarization and Incident Angle Insensitive Dual-Band Metamaterial Absorber Based on Isotropic Resonators
By
Progress In Electromagnetics Research, Vol. 144, 123-132, 2014
Abstract
Polarization and incident angle independent metamaterial-based absorber (MA) which acts as a strong dual-band resonator is designed and constructed. Besides, a method to design single/dual-band MA is presented in detail. The proposed model is based on isotropic ring resonator with gaps and octa-star strip (OSS) which allows maximization in the absorption because of the characteristic features of the structure. Reflection and absorption responses are obtained both numerically and experimentally and compared to each other. Two maxima in the absorption are experimentally obtained around 90% at 4.42 GHz for the first band and 99.7% at 5.62 GHz for the second band which are in good agreement with the numerical simulations (95.6% and 99.9%, respectively). The numerical studies verify that the dual-band MA can provide perfect absorption at wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. The proposed model can easily be used in many potential application areas such as security systems, sensors, medical imaging technology.
Citation
Furkan Dincer, Muharrem Karaaslan, Emin Unal, Kemal Delihacioglu, and Cumali Sabah, "Design of Polarization and Incident Angle Insensitive Dual-Band Metamaterial Absorber Based on Isotropic Resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403
References

1. Vesalago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

3. Chen, X., "Implicit boundary conditions in transformation-optics cloaking for electromagnetic waves," Progress In Electromagnetics Research, Vol. 121, 521-534, 2011.
doi:10.2528/PIER11101010

4. Silva-Macedo, J. A., M. A. Romero, and B.-H. V. Borges, "An extended FDTD method for the analysis of electromagnetic field rotators and cloaking devices," Progress In Electromagnetics Research, Vol. 87, 183-196, 2008.
doi:10.2528/PIER08101507

5. Zhang, Y. and M. A. Fiddy, "Covered image of superlens," Progress In Electromagnetics Research, Vol. 136, 225-238, 2013.
doi:10.2528/PIER12121206

6. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902

7. Bilotti, F., L. Nucci, and L. Vegni, "An SRR-based microwave absorber," Microw. Opt. Techn. Let., Vol. 48, 2171-2175, 2006.
doi:10.1002/mop.21891

8. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-4, 2008.

9. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, No. 1, 8-9, 2011.
doi:10.1049/el.2010.2770

10. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Opt. Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155

11. Li, L., Y. Yang, and C. H. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, 063702, 2011.
doi:10.1063/1.3638118

12. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Opt. Express, Vol. 21, No. 8, 9691-9702, 2013.
doi:10.1364/OE.21.009691

13. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108-4, 2009.
doi:10.1103/PhysRevB.80.085309

14. Zhu, B., Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, "Polarization modulation by tunable electromagnetic metamaterial reflector/absorber," Opt. Express, Vol. 18, No. 22, 23196-23203, 2010.
doi:10.1364/OE.18.023196

15. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

16. Huang, Y. J., G. J. Wen, J. Li, W. R. Zhu, P. Wang, and Y. H. Sun, "Wide-angle and polarization-independent metamaterial absorber based on snow flake-shaped configuration," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 5, 552-559, 2013.
doi:10.1080/09205071.2013.756383

17. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

18. Sabah, C., H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multi-layer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
doi:10.2528/PIER13013110

19. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605

20. Sabah, C. and F. Urbani, "Experimental analysis of ¤-shaped magnetic resonator for mu-negative metamaterials," Opt. Commun., Vol. 294, 409-413, 2013.
doi:10.1016/j.optcom.2012.12.071

21. Wiltshire, M. C. K., J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science, Vol. 291, No. 5505, 849-851, 2001.
doi:10.1126/science.291.5505.849

22. Sabah, C. and H. G. Roskos, "Terahertz sensing application by using planar split-ring-resonator structures," Microsyst. Technol., Vol. 18, 2071-2076, 2012.
doi:10.1007/s00542-012-1559-0

23. Sabah, C., "Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8--9, 1105-1115, 2012.
doi:10.1080/09205071.2012.710537

24. Sabah, C., "Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators," Appl. Phys. A: Mater. Sci. Process., Vol. 108, 457-463, 2012.
doi:10.1007/s00339-012-6913-7

25. Sabah, C., "Microwave response of octagon-shaped parallel plates: Low-loss metamaterial," Opt. Commun., Vol. 285, No. 21--22, 4549-4552, 2012.
doi:10.1016/j.optcom.2012.06.043

26. Sabah, C. and H. G. Roskos, "Broadside-coupled triangular split-ring-resonators for terahertz sensing," Eur. Phys. J. | Appl. Phys., Vol. 61, 30402, 2013.
doi:10.1109/JSTQE.2012.2193875

27. Sabah, C., "Multiband metamaterials based on multiple concentric open-ring resonators topology," IEEE J. Sel. Top. Quant. Electron., Vol. 19, 8500808, 2013.
doi:10.2528/PIER13050601

28. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.

29. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER12072008

30. Iqbal, M. N., M. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012.
doi:10.2528/PIER11112301

31. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM Design analysis of new metamaterial for EM," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11121903

32. Gong, Y., K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER03052601

33. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
doi:10.2528/PIER07101702

34. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.

35. Malek, M. F. B. A., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A.,A. R. Othman, P. J. Soh, A. A. A.-H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.
doi:10.2528/PIER12030601

36. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, M. F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber ," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012.
doi:10.2528/PIER08042805

37. Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnetics Research, Vol. 83, 199-224, 2008.
doi:10.2528/PIER06040601

38. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER10071409

39. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.

40. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
doi:10.2528/PIER13061105

41. Dincer, F., M. Karaaslan, E. Unal, and C. Sabah, "Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-star strip configuration," Progress In Electromagnetics Research,, Vol. 141, 219-231, 2013.
doi:10.2528/PIER13050601

42. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-2013, 2013.