1. Vesalago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
2. Shelby, R. A., D. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847
3. Chen, X., "Implicit boundary conditions in transformation-optics cloaking for electromagnetic waves," Progress In Electromagnetics Research, Vol. 121, 521-534, 2011.
doi:10.2528/PIER11101010
4. Silva-Macedo, J. A., M. A. Romero, and B.-H. V. Borges, "An extended FDTD method for the analysis of electromagnetic field rotators and cloaking devices," Progress In Electromagnetics Research, Vol. 87, 183-196, 2008.
doi:10.2528/PIER08101507
5. Zhang, Y. and M. A. Fiddy, "Covered image of superlens," Progress In Electromagnetics Research, Vol. 136, 225-238, 2013.
doi:10.2528/PIER12121206
6. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902
7. Bilotti, F., L. Nucci, and L. Vegni, "An SRR-based microwave absorber," Microw. Opt. Techn. Let., Vol. 48, 2171-2175, 2006.
doi:10.1002/mop.21891
8. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-4, 2008.
9. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, No. 1, 8-9, 2011.
doi:10.1049/el.2010.2770
10. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Opt. Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155
11. Li, L., Y. Yang, and C. H. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, 063702, 2011.
doi:10.1063/1.3638118
12. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Opt. Express, Vol. 21, No. 8, 9691-9702, 2013.
doi:10.1364/OE.21.009691
13. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108-4, 2009.
doi:10.1103/PhysRevB.80.085309
14. Zhu, B., Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, "Polarization modulation by tunable electromagnetic metamaterial reflector/absorber," Opt. Express, Vol. 18, No. 22, 23196-23203, 2010.
doi:10.1364/OE.18.023196
15. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110
16. Huang, Y. J., G. J. Wen, J. Li, W. R. Zhu, P. Wang, and Y. H. Sun, "Wide-angle and polarization-independent metamaterial absorber based on snow flake-shaped configuration," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 5, 552-559, 2013.
doi:10.1080/09205071.2013.756383
17. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306
18. Sabah, C., H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multi-layer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
doi:10.2528/PIER13013110
19. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605
20. Sabah, C. and F. Urbani, "Experimental analysis of ¤-shaped magnetic resonator for mu-negative metamaterials," Opt. Commun., Vol. 294, 409-413, 2013.
doi:10.1016/j.optcom.2012.12.071
21. Wiltshire, M. C. K., J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science, Vol. 291, No. 5505, 849-851, 2001.
doi:10.1126/science.291.5505.849
22. Sabah, C. and H. G. Roskos, "Terahertz sensing application by using planar split-ring-resonator structures," Microsyst. Technol., Vol. 18, 2071-2076, 2012.
doi:10.1007/s00542-012-1559-0
23. Sabah, C., "Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8--9, 1105-1115, 2012.
doi:10.1080/09205071.2012.710537
24. Sabah, C., "Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators," Appl. Phys. A: Mater. Sci. Process., Vol. 108, 457-463, 2012.
doi:10.1007/s00339-012-6913-7
25. Sabah, C., "Microwave response of octagon-shaped parallel plates: Low-loss metamaterial," Opt. Commun., Vol. 285, No. 21--22, 4549-4552, 2012.
doi:10.1016/j.optcom.2012.06.043
26. Sabah, C. and H. G. Roskos, "Broadside-coupled triangular split-ring-resonators for terahertz sensing," Eur. Phys. J. | Appl. Phys., Vol. 61, 30402, 2013.
doi:10.1109/JSTQE.2012.2193875
27. Sabah, C., "Multiband metamaterials based on multiple concentric open-ring resonators topology," IEEE J. Sel. Top. Quant. Electron., Vol. 19, 8500808, 2013.
doi:10.2528/PIER13050601
28. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
29. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER12072008
30. Iqbal, M. N., M. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012.
doi:10.2528/PIER11112301
31. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM Design analysis of new metamaterial for EM," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11121903
32. Gong, Y., K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER03052601
33. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
doi:10.2528/PIER07101702
34. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
35. Malek, M. F. B. A., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A.,A. R. Othman, P. J. Soh, A. A. A.-H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.
doi:10.2528/PIER12030601
36. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, M. F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber ," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012.
doi:10.2528/PIER08042805
37. Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnetics Research, Vol. 83, 199-224, 2008.
doi:10.2528/PIER06040601
38. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER10071409
39. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
40. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
doi:10.2528/PIER13061105
41. Dincer, F., M. Karaaslan, E. Unal, and C. Sabah, "Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-star strip configuration," Progress In Electromagnetics Research,, Vol. 141, 219-231, 2013.
doi:10.2528/PIER13050601
42. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-2013, 2013.