Vol. 144
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-01-15
The Wavelength Division Multiplexer Realized in Three-Dimensional Unusual Surface-Plasmon-Induced Photonic Crystals Composed of the Epsilon-Negative Materials Shells
By
Progress In Electromagnetics Research, Vol. 144, 151-169, 2014
Abstract
In this paper, the dispersive properties and switching state of three-dimensional (3D) photonic crystals (PCs) with diamond lattices, which are composed of the core isotropic dielectric spheres with surrounded by the epsilon-negative (ENG) materials shells inserted in the isotropic dielectric background (air), are theoretically investigated in detail based on a modified plane wave expansion method. The wavelength division multiplexer can be realized easily by tuning the switching state of such PCs. The equations for computing band structures for such 3D PCs are presented. Our analysis shows that the proposed double-shell structures can obtain the complete photonic band gaps (PBGs) which can be realized optical switching with on or off states by manipulating the radius of core dielectric sphere, the relative dielectric constant of background, the dielectric constant of ENG materials and the electronic plasma frequency, respectively. However, the thickness of the ENG materials shell cannot change the switching state as the radius of core dielectric sphere is certain. Numerical simulations also show that a flatbands region, and the stop band gaps (SBGs) in (1 0 0) and (1 1 1) directions which are above the flatbands region can be achieved. The SBGs in (1 0 0) and (1 1 1) directions can also be tuned by the parameters as mentioned above. There also exists a threshold value for the thickness of ENG material shell, which can make the band structures for the 3D PCs with double-shell structures similar to those obtained from the same structure containing the pure ENG materials spheres. In this case, the dielectric function of inserted core sphere will not affect the band structures. It means that we can achieve the PBGs by replacing the pure ENG materials spheres with such double-shell structures to make fabricate easily and save the material in the realization. It is also noticed that the flatband region is determined by the existence of surface plasmon modes, and the upper edge of flatband region does not depend on the topology of lattice. Such presented 3D PCs with double-shell structures offer a novel way to realize the wavelength division multiplexers.
Citation
Hai Feng Zhang, Shaobin Liu, and Hai-Ming Li, "The Wavelength Division Multiplexer Realized in Three-Dimensional Unusual Surface-Plasmon-Induced Photonic Crystals Composed of the Epsilon-Negative Materials Shells," Progress In Electromagnetics Research, Vol. 144, 151-169, 2014.
doi:10.2528/PIER13110101
References

1. Yablonovitch, E., "Inhibited spontaneous emission of photons in solidstate physics and electronies," Phys. Rev. Lett., Vol. 58, 2059-2061, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

4. Du, G. Q., H. T. Jiang, Z. S. Wang, and H. Chen, "Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals," Opt. Lett., Vol. 34, No. 5, 578580, 2009.
doi:10.1364/OL.34.000578

5. Liu, Q., Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, "All-optical half adder based on cross structures in two-dimensional photonic crystals," Opt. Exp., Vol. 16, No. 23, 18992-19000, 2008.
doi:10.1364/OE.16.018992

6. Zhang, H. F., M. Li, and S. B. Liu, "Defect mode properties of magnetized plasma photonic crystals," Acta Phys. Sin., Vol. 58, No. 2, 1071-1076, 2009.

7. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. Dai, "Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals," Solid State Commun., Vol. 152, 2113-2119, 2012.
doi:10.1016/j.ssc.2012.09.009

8. Fan, S. H., S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, "Waveguide branches in photonic crystals," J. Opt. Soc. Am. B, Vol. 18, 162-165, 2001.
doi:10.1364/JOSAB.18.000162

9. Kockaert, P., P. Tassin, I. Veretennicoff, G. V. der Sande, and M. Tlidi, "Beyond the zero-diffraction regime in optical cavities with a left-handed material," J. Opt. Soc. Am. B, Vol. 26, No. 12, B148-B155, 2009.
doi:10.1364/JOSAB.26.00B148

10. Wang, L., H. Chen, and S. Zhu, "Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials," Phys. Rev. B, Vol. 70, 245102, 2004.
doi:10.1103/PhysRevB.70.245102

11. Chen, Y., "Broadband one-dimensional photonic crystals wave plate containing single-negative materials," Opt. Exp., Vol. 18, No. 19, 19920-19929, 2010.
doi:10.1364/OE.18.019920

12. Veselago, V. G., "The electrodynamics of substance with simultaneously negative values of and ," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

14. Pendry, J. B., "Negative refraction makes a perfect len," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

15. Morits, D. and C. R. Simovski, "Electromagnetic characterization of planar and bulk metamaterials: A theoretical study," Phys. Rev. B, Vol. 82, No. 16, 165114, 2010.
doi:10.1103/PhysRevB.82.165114

16. Smith, D. R., S. Schultz, P. Marko, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coeffcients,", Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

17. Liu , X. and A. Alu, "Homogenization of quasiisotropic metamaterials composed by dense arrays of magnetodielectric spheres," Metamaterials, Vol. 5, No. 2--3, 56-63, 2011.
doi:10.1016/j.metmat.2011.04.001

18. Holloway, C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a meta¯lm: With an application to a controllable surface composed of resonant particles ," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 865-865, 2005.

19. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Scher, and J. Baker-Jarvis, "Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2226-2240, 2011.
doi:10.1109/TAP.2011.2143679

20. Dimitriadis, A. I., D. L. Sounas, N. V. Kantartzis, C. Caloz, and T. D. Tsiboukis, "Surface susceptibility bianisotropic matrix model for periodic metasurfaces of uniaxially mono-anisotropic scatterers under oblique TE-wave incidence," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5753-5767, 2012.
doi:10.1109/TAP.2012.2211553

21. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Exp., Vol. 16, No. 22, 18131-18144, 2008.
doi:10.1364/OE.16.018131

22. Sounas, D. L., Focusing efficiency analysis and performance, "Focusing efficiency analysis and performance optimization of arbitrarily-sized DNG metamaterial slabs with losses," IEEE Trans. Microwave Theory Techn., Vol. 54, No. 12, 4111-4121, 2006.
doi:10.1109/TMTT.2006.885564

23. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Physics Plasma, Vol. 19, 022103, 2012.
doi:10.1063/1.3680628

24. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, "Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals ," Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012.
doi:10.2528/PIERB12040406

25. Kamp, M., T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, "Semiconductor photonic crystals for optoelectronics," Phys. E, Vol. 21, No. 2--4, 802-808, 2004.
doi:10.1016/j.physe.2003.11.122