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The Wavelength Division Multiplexer Realized in Three-Dimensional
Unusual Surface-Plasmon-Induced Photonic Crystals Composed

of the Epsilon-negative Materials Shells

Hai-Feng Zhang1, 2, 3, *, Shao-Bin Liu1, 3, and Hai-Ming Li1, 3

Abstract—In this paper, the dispersive properties and switching state of three-dimensional (3D)
photonic crystals (PCs) with diamond lattices, which are composed of the core isotropic dielectric spheres
with surrounded by the epsilon-negative (ENG) materials shells inserted in the isotropic dielectric
background (air), are theoretically investigated in detail based on a modified plane wave expansion
method. The wavelength division multiplexer can be realized easily by tuning the switching state of
such PCs. The equations for computing band structures for such 3D PCs are presented. Our analysis
shows that the proposed double-shell structures can obtain the complete photonic band gaps (PBGs)
which can be used to realize optical switching by manipulating the radius of core dielectric sphere, the
relative dielectric constant of background, the dielectric constant of ENG materials and the electronic
plasma frequency, respectively. However, the thickness of the ENG materials shell cannot change the
switching state as the radius of core dielectric sphere is certain. Numerical simulations also show that
a flatband region, and the stop band gaps (SBGs) in (1 0 0) and (1 1 1) directions which are above the
flatband region can be achieved. The SBGs in (1 0 0) and (1 1 1) directions can also be tuned by the
parameters as mentioned above. There also exists a threshold value for the thickness of ENG material
shell, which can make the band structures for the 3D PCs with double-shell structures similar to those
obtained from the same structure containing the pure ENG materials spheres. In this case, the inserted
core sphere will not affect the band structures. It means that we can achieve the PBGs by replacing
the pure ENG materials spheres by such double-shell structures to make fabricate easily and save the
material in the realization. It is also noticed that the flatband region is determined by the existence
of surface-plasmon modes, and the upper edge of flatband region does not depend on the topology of
lattice. Such presented 3D PCs with double-shell structures offer a novel way to realize the wavelength
division multiplexers.

1. INTRODUCTION

The idea of photonic crystals (PCs) is first proposed by Yablonovitch [1] and John [2], which are a
kind of artificial materials with periodic arrangement of different dielectrics in space. The PCs have
attracted great attention from researchers due to their abilities to produce the photonic band gaps
(PBGs) [3]. If the frequency of electromagnetic (EM) wave is located in such magic regions, any
polarizations of EM waves cannot propagate through PCs along any directions. This unique feature
makes PCs used as a promising candidate to build many important optical devices, such as absorber [4],
all-optical adder [5], filter [6], omnidirectional reflector [7], and waveguide [8]. During last two decades,
the optical properties of PCs have been studied extensively. However, the conventional dielectric PCs
are highly sensitive to the lattices and randomness when they are worked as the optical devices. It
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means that the PBGs not only suffer from the errors from manufacturing, but also cannot be tuned
as the constituents and topologies of PCs are certain. To overcome such drawbacks, metamaterials
are introduced into the conventional PCs to obtain the tunable PBGs [9–11]. Metamaterials are firstly
proposed theoretically by Veselago in 1968 [12], which can also be called left-hand materials due to their
unusual physical properties such as inverse Snell’s law, negative refraction index, Cherenkov effects
and reversed Doppler effect. Recently, metamaterials have been realized in experiment by Simth et
al. [13] and Pendry [14], and also investigated extensively. Morits and Simovski [15] studied the EM
properties of planar and bulk metamaterials in theory and found that the scattering parameters of
bilayer metafilm can be predicted by the proposed method. Simth et al. [16] also demonstrated that the
effective permittivity and permeability of finite lengths of metamaterials can be obtained successfully
by the transmission/reflection coefficients computed from transfer matrix simulations. Liu and Alu [17]
realized the zero-index or quasi-isotropic negative-index metamaterials in a certain frequency region
with negligible dispersive effects by a metamaterial geometry composed of periodic arrays of densely
magnetodielectric spheres. Holloway et al. [18] derived a model for the reflection and transmission
properties of a metafilm by using generalized sheet transition conditions, and they found that the
coefficients of transmission and reflection for metafilm can be expressed in term of the magnetic and
electric polarizabilities of the scatterers on the metafilm as the incident plane wave is arbitrary. Kim et
al. [19] presented line-reflect-line-like expressions for obtaining the parameters of a metamaterial by the
measuring the S-parameters but do not need any information interior to the metamaterial, and they also
found that the boundary effects and spatial dispersion will be observed in a metamaterial. Dimitriadis et
al. [20] developed a accurate matrix surface susceptibility model for the homogenization of metasurfaces
under oblique TE plane wave incidence, and they proclaimed that the efficiency of the model is
contingent upon the electrical size of the scatterers rather than the lattice periodicity. Epsilon-negative
(ENG) materials can be looked as a kind of metamaterials [9–11], in which permittivity ε is negative, but
permeability µ is positive. However, if µ and ε are negative, the double-negative (DNG) metamaterial
can be obtained. As mentioned in the report by Penciu et al. [21], the DNG metamaterial can be realized
by coupled split-ring resonators, and multi-gaps can also be obtained. Sounas et al. [22] investigated the
optimal design of arbitrarily-dimensional DNG metamaterial slabs and the focusing characteristic based
on the a new technique, which employs the signal processing notions of the cross-correlation coefficient,
and mean square error is introduced. Compared to the DNG metamaterial, the ENG materials can
always be found in nature and can also be obtained easily in practical applications in some frequency
regions, such as plasma [23], superconductors [24], semiconductors [25] and metals [26]. Compared to
the conventional dielectric PCs, the PCs containing the ENG materials display strong spatial dispersion,
and zero-n̄ PBGs can also be obtained [11] which are not dependent on the incident angle, lattices, and
polarization of EM waves. Thus, the tunable PCs containing the ENG materials become a new research
focus, which has been investigated extensively. Up to now, the most extensive works are reported on
the applications realized in one-dimensional (1D) or 2D PCs, such as the omnidirectional mirrors [27],
omnidirectional filter [28] and omnidirectional reflector [29]. However, the 1D and 2D PCs structure
in theory may not be very well in accordance with the real applications. Thus, the 3D PCs structure
may be closer to the actual situation. Compared to 1D and 2D cases, the reports on the 3D PCs
containing the ENG materials are few. Although some works on the 3D metals [30–32] and plasma [33]
PCs in theory and experiment can be found, the effects dielectric constant of ENG materials on the
dispersive are not discussed, or the effective dielectric function of ENG material is looked as a constant
but a frequency-depended medium. The relationships between the surface-plasmon modes and lattices
for PCs are not studied in 3D case. From these reports [33], we can know that if 3D PCs containing
the ENG materials with high symmetry, such as face-centered-cubic (fcc) lattices, simple-cubic (sc)
lattices, and body-centered-cubic (bcc) lattices, the complete PBGs hardly can be achieved. To solve
this problem, the anisotropic dielectric has to be introduced into 3D PCs. However, as mentioned in
our previous work [33], the 3D PCs with diamond lattices can easily realize the complete PBGs without
introducing the anisotropic dielectric. In those reports [34, 35], our research group also investigated the
dispersive properties of stop band gaps (SBGs) in the Γ-X and Γ-L directions for 3D PCs with fcc and
diamond lattices as the ENG materials introduced, respectively. From the results in those reports, if
we want to obtain the tunable switching gaps, the dielectric constant of background must be large, and
inserted spheres must be pure. Unfortunately, technological difficulties can be found in fabricating such
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kind of high symmetry 3D PCs. In order to realize the tuning all-optical switching in 3D PCs with low
background dielectric constant, we can use double-shell structures to construct 3D PCs as mentioned by
Chan et al. [31] and Aryal et al. [36]. On the other hand, there is still great demand for the wavelength
division multiplexer (WDM) for communication purposes [37]. Although introducing the Kerr nonlinear
materials into PCs can realize WDM [38], the larger pump energy for nonlinear materials may become
a barrier for realizing the integrated all-optical logic devices. As we know, the key point in realizing
WDM is to obtain the tunable switching gaps [38]. In other words, if the switching state of PCs is
changed, WDM can be realized. Thus, WDM can be realized easily by the 3D PCs containing ENG
materials.

As mentioned above, the aims of this paper are to investigate the optical properties and switching
state of 3D PCs with diamond lattices which are composed of the core isotropic dielectric spheres with
surrounded by the ENG materials shells inserted in the air based on a modified plane wave expansion
(PWE) method, and the unusual properties of surface-plasmon modes are also studied. A more general
Drude-like model is used to describe the effective dielectric function of ENG material, and the damping
factor also is considered. This paper is organized as follows. The equations computing the band
structures are presented in Section 2. In Section 3, the influences of the radius of core dielectric sphere,
relative dielectric constant of background, dielectric constant of ENG material and electronic plasma
frequency on optical properties and switching state of such 3D PCs are investigated, respectively. The
unusual properties of surface-plasmon modes can also be found in this section. Finally, conclusions
are given in Section 4. An e−jωt time-dependence is implicit through the paper, with t the time, and
j =

√−1. We also consider c as light speed in vacuum.

2. THEORETICAL MODEL AND NUMERICAL METHOD

The first irreducible Brillouin zone and schematic structure of such 3D PCs containing the ENG
materials with diamond lattices can be found in Figure 1. As shown in Figure 1, the high
symmetry points have the coordinate as Γ (0, 0, 0), X = (2π/a, 0, 0), W = (2π/a, π/a, 0), K =
(1.5π/a, 1.5π/a, 0), L = (π/a, π/a, π/a), and U = (2π/a, 0.5π/a, 0.5π/a). The (1 0 0) and (1 1 1)
directions can be described by the points L, Γ and X. Assuming dielectric background, the dielectric
core and ENG materials are isotropic and homogeneous, and the relative dielectric functions are εb, εa

and εp, respectively. As plotted in Figure 1(b), we consider the radius of the shells, radius of the core
spheres and lattice constant as R2, R1 and a, respectively. In our numerical calculations, the ENG
material is assumed frequency-dependent, and εp can be written as [34, 35]

εp(ω) = εc −
ω2

p

ω(ω + jγ)
(1)

where εc, ωp and γ are the dielectric constant of ENG material, electronic plasma frequency and damping
factor that contribute to the absorption and losses, respectively. In order to achieve the dispersive curves
of PCs, many numerical methods can be used [39–41]. Among those methods, PWE method is the most
popular one to obtain the band structures, although there are many shortcomings, such as convergence
problem and large number of plane waves [42, 43]. Recently, the band structures for the PCs containing
the Drude-type materials, such as plasma [44] and metal [45], can be computed successfully by a modified
PWE method, which can compute the general nonlinear eigenvalue equation by a standard linearization
technique. Thus, the PCs composed of the core spheres surrounded by the ENG material shells inserted
in the air can be calculated easily by such a method. In this paper, the same technique will also be
used to calculate the band structures of such 3D PCs. We consider the relative dielectric constant of
core dielectric sphere to be 13.9, and the Maxwell’s equation for the magnetic field in such 3D PCs can
be expressed as:

∇×
[

1
ε(r)

∇×H
]

=
ω2

c2
H (2)

Since ε(r) is periodic, we can use Bloch’s theorem to expand the H field in term of plane wave,

H(r) =
∑

G

2∑

λ=1

hG,λ
_eλe[j(k+G)·r] (3)



154 Zhang, Liu, and Li

where k is a wave vector in the Brillouin zone of lattice, G a reciprocal-lattice vector, and _e1, _e2 are
orthogonal unit vectors that are both perpendicular to wave vector k + G because of the transverse
character of magnetic field H (i.e., ∇ ·H = 0). According to the modified PWE method [33–35], the
dielectric constant dyadic can also be expanded in its Fourier form as

ε−1(r)=ε−1

G,G
′=

∑

G

κ(G)ejG·r (4)

κG,G′=





(
ω2 + jγω

εcω2 + jεcγω − ω2
p

− 1

εb

)
f2 +

(
1

εa
− ω2 + jγω

εcω2 + jεcγω − ω2
p

)
f1 +

1

εb
, |G−G′| = 0

(
ω2 + jγω

εcω2+jεcγω−ω2
p

− 1

εb

)
· 3f2

(
sin (|G−G′|R2)− (|G−G′|R2) cos(|G−G′|R2)

(|G−G′ |R2)
3

)
· cos

(|G−G′| ·R0

)

+

(
1

εa
− ω2 + jγω

εcω2+jεcγω−ω2
p

)
· 3f1

(
sin(|G−G′|R1)−(|G−G′|R1) cos(|G−G′|R1)

(|G−G′ |R1)3

)
· cos(|G−G′|·R0),

|G−G′| 6= 0

(5)

where the vector R0 is (0.125a, 0.125a, 0.125a), f1 = (8πR3
1)/(3Vm) the filling factor of the dielectric

core spheres, and f2 = (8πR3
2)/(3Vm) the filling factor of the ENG-material-dielectric spheres,

respectively. Vm is the volume of unit cell. Substituting Eq. (3) and Eq. (4) into Eq. (2), the following
linear matrix equations can be obtained

∑

G′,λ′
Hλ,λ′

G,G′hG′,λ′ =
ω2

c2
hG,λ (6)

where

Hλ,λ′
G,G′ = |k + G| ∣∣k + G′∣∣

(
_e2 · ε−1

G,G′ ·
_e2′ −_e2 · ε−1

G,G′ ·
_e1′

−_e1 · ε−1
G,G′ ·

_e2′
_e1 · ε−1

G,G′ ·
_e1′

)
(7)

where ε−1
G,G′ = κ(G−G′). We can write hG,λ of H(r) in the form [33–35]

hG,λ =
∑

G

B(k|G)ej(k+G)·r (8)

We can obtain the equation for the coefficients {B(k|G)}
((

ω2 + jγω

εcω2+jεcγω−ω2
p

− 1
εb

)
f2+

(
1
εa
− ω2+jγω

εcω2+jεcγω − ω2
p

)
f1+

1
εb

)
· |k+G| ∣∣k + G′∣∣ · ↔F ·B (k|G)

+
∑

G′
‖

′
(((

ω2 + jγω

εcω2 + jεcγω − ω2
p

− 1
εb

)
· 3f2

(
sin(|G−G′|R2)− (|G−G′|R2) cos (|G−G′|R2)

(|G−G′ |R2)3

)

+
(

1
εa
− ω2 + jγω

εcω2 + jεcγω − ω2
p

)
3f1

(
sin(|G−G

′ |R1)− (|G−G
′ |R1) cos(|G−G

′ |R1)
(|G−G′ |R1)3

))

· cos
(|G−G′| ·R0

)) · |k + G| ∣∣k + G′∣∣ · ↔F ·B
(
k|G′)

=
ω2

c2
B(k|G) (9)

where the prime on the sum over G′ indicates that the term with G′ = G is omitted. We consider
↔
F =

(
_e2 · _e2′ −_e2 · _e1′

−_e1 · _e2′
_e1 · _e1′

)
. At this point we use the definition of a complex variable µ given by

µ = ω/c (10)

the linear equation can be written as

µ4
↔
I − µ3

↔
I − µ2

↔
U− µ

↔
V − ↔

W = 0 (11)
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↔
T(G|G′) = −j

γ

c
δG·G′ , (12a)

↔
U

(
G|G′) =

{
ω2

p

εcc2
+

[
1
εb

+
(

1
εc
− 1

εb

)
f2 +

(
1
εa
− 1

εc
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f1

]
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δG·G′

+
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1
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− 1

εb

)
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3
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1
εa
− 1

εc
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(
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3






 · ↔M (12b)

↔
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(
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j
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1
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1
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(
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1
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 · ↔M (12c)
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p
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(
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p
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 · ↔M (12d)

where
↔
M = |k + G||k + G′| · ↔F · cos(G ·R0), and the element of the N ×N matrices are

↔
T,

↔
U,

↔
V and

↔
W. This polynomial form can be transformed into a linear problem in 4N dimension by

↔
Q that fulfills

↔
Qz = µz,

↔
Q =




0
↔
I 0 0

0 0
↔
I 0

0 0 0
↔
I

↔
W

↔
V

↔
U

↔
T




(13)

The complete solution of Eq. (11) is obtained by computing for the eigenvalues of Eq. (13). Of course,
the real part of such eigenvalues can determine the dispersion relation.

3. RESULTS AND DISCUSSION

In order to investigate the optical properties and switching state of such 3D PCs, we consider a simpler
case. We make ENG materials surround the dielectric sphere (εa = 13.9) as a shell structure. Such
double-shell structures are inserted into the air (εb = 1). Without loss of generality, we use ωa/2πc to
normalize the frequency region. We use a variable ωp0 = 2πc/a to define the electronic plasma frequency
as ωp = ωpl = 0.15ωp0, and choose the damping factor as γ = 0.02ωpl , µa = 1, µb = 1, and µp = 1,
respectively. As mentioned above, ωp0 and ωpl are the symbols to define the constants and have no any
physical meanings. In our calculation, we use 729 plane waves to make the convergence accuracy better
than 1% for the lower bands [46].
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In order to calculate the PBGs for such 3D PCs, we developed a code based on the PWE method.
We checked our results against band structures calculated by the finite-difference frequency-domain
(FDFD) method [47]. The test case is the band structure of dielectric spheres arranged in the fcc
structure with filling factor f = 0.3 and εa = 12.96, embedded in the ENG materials with ωp = 0.3πc/a
and γ = 0.02ωp. In Figure 1, the band structures calculated by the FDFD and PWE methods are
displayed with different ωp and γ. The black solid curves are the results obtained by the PWE method,
and the red open circles are the results calculated by the FDFD method. As shown in Figure 1, excellent
agreement can be observed between the two methods, and Figure 1(a) is in excellent agreement with
Figure 2(d) in [46].
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Figure 1. (a) Schematic structure of such 3D PCs. (b) Illustration of a unit cell of such 3D PCs.
(c) The first irreducible Brillouin zone showing symmetry point used for obtaining the PBG.

(a) (b)

Figure 2. Dispersion curves for 3D fcc PCs with dielectric filling factor f = 0.3 and εa = 12.96 but
with different ωp and γ. (a) ωp = 0, γ = 0 and (b) ωp = 0.15ωp0, γ = 0.02ωp.

3.1. The Optical Properties and Switching State of Such 3D PCs

In Figure 3, we present the band structures for such 3D PCs with εa = 13.9, εb = 1, εc = 1,
R1 = 0.1165a and R2 = 0.2165a but with different ωp and γ. The red regions indicate the PBGs.
As shown in Figure 3(a), if ωp = 0 and γ = 0, the ENG material shells can be looked as the air, and
the two complete PBGs can be found in frequency region 0–3.2πc/a. The PBGs present themselves
in 1.1416–1.1558 (2πc/a) and 1.3966–1.4489 (2πc/a), respectively. In this case, all optical switching
can be realized. As shown in Figure 3(b), if ωp = 0.15ωp0 and γ = 0.02ωpl , not only such 3D PCs
with double-shell structures containing the ENG material shells can produce the complete PBGs, but
also one flatband region can be found at 1.1444–1.1592 (2πc/a), 1.399–1.4512 (2πc/a) and 0.0246–0.15
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(a) (b)

Figure 3. The band structures for such 3D PCs with εa = 13.9, εb = 1, εc = 1, R1 = 0.1165a and
R2 = 0.2165a but with different ωp and γ. (a) ωp = 0, γ = 0 and (b) ωp = 0.15ωp0, γ = 0.02ωpl ,
respectively. The red shaded region indicates PBGs.

(2πc/a), respectively. Compared to the results in Figure 3(a), the edges of PBGs will shift upward to
higher frequencies, and bandwidth of the first PBG can be enlarged, obviously. Thus, such double-shell
structures can enhance the PBG as the ENG material shell is introduced. In other words, the switching
state of such 3D PCs can be tuned by introducing the ENG materials. The SBGs in the (1 0 0) and
(1 1 1) directions at X and L points are located in 0.7427–0.8108 (2πc/a) and 0.8689–0.8912 (2πc/a),
respectively. As mentioned in our previous works [34, 35], the complete PBGs and SBGs can be tuned
by the parameters of the ENG materials. It means that the switching state can also be manipulated. As
mentioned above, the optical switching can be realized in such PCs in which the dielectric core spheres
are surrounded by the ENG materials shells in the air. The switching gaps can be obtained with on
and off states in the different frequency regions. Thus, the WDM can be realized by the properties of
switching state for such 3D PCs. In this paper, we only focus on the switching state and dispersive
properties of the first two PBGs and first SBGs in (1 0 0) and (1 1 1) directions at X and L points for
such 3D PCs containing the ENG materials shells in the frequency domain 0–3.2πc/a.

3.2. The Unusual Properties of Surface-Plasmon Modes

As we know [34, 35], if the ENG material is introduced into the 3D PCs, the multiflatbands can be
found in the flatband region in the case of ω < ωp. The existing multiflatbands can be explained by the
existence of surface-plasmon modes [34, 35]. In the frequency region ω < ωp, the real part of dielectric
function of ENG material is negative, but that for background is positive. Thus, the dielectric will
change sign at interface across the ENG materials shells and background. The plasmon modes will be
observed. In order to study the surface-plasmon modes for such 3D PCs, we plot the band structures
for such 3D PCs with εa = 13.9, εb = 1, εc = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R2 = 0.2165a but with
the different R1 in Figure 4. As shown in Figures 4(a)–(c), the band structures of such PCs are hardly
changed. There exists a threshold value for the thickness of ENG material shell (R2-R1) to make R1

have no effect on the band structures. It means that such double-shell structures can be equivalent to
the pure ENG material spheres. This can make fabrication of pure ENG material spheres structure
easily and save the material in the realization. In Figure 5, we present the dispersive curves for such
3D PCs with R1 = 0.03a, εb = 1, εc = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R2 = 0.2165a but with
different dielectrics of inserted core spheres. As shown in Figures 5(a)–(c), if R1 = 0.03a, the band
structures will be similar to each other as Te (no = 4.8, ne = 6.2) [33, 46], εa = 12.4 and εa = 13.9
are considered, respectively. It also means that the critical value of the ENG materials shell can make
εa have no effect on the dispersive properties. In Figure 6, we display the band structures for such
PCs with a similar case to Figure 5 except for εb = 20 and inserted different dielectric core spheres.
As shown in Figures 6(a)–(c), if R1 = 0.03a, the band structures will be similar to each other. The
complete PBGs can be observed, which present themselves at 0.2768–0.2877 (2πc/a), 0.2768–0.2877
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 (a) (b) (c)

Figure 4. The band structures for such 3D PCs with εa = 13.9, εb = 1, εc = 1, ωp = 0.15ωp0,
γ = 0.02ωpl and R2 = 0.2165a but with the different radius of the core sphere. (a)R1 = 0, (b)
R1 = 0.02a, and (c) R1 = 0.04a, respectively.

 
(a) (b) (c)

Figure 5. The band structures for such 3D PCs with R1 = 0.03a, εb = 1, εc = 1, ωp = 0.15ωp0,
γ = 0.02ωpl and R2 = 0.2165a but with the different dielectric of inserted core spheres. (a) εa = 12.4,
(b) εa = 13.9, and (c) Te (no = 4.8, ne = 6.2), respectively.

(2πc/a) and 0.2776–0.2882 (2πc/a). From the results in Figure 6, we can also know that the PBGs are
hardly depended on εa as the thickness of ENG material shell is large enough. It needs to be noticed
that the flatband region has also never changed. According to the results in the Figures 4–6, the unusual
surface-plasmon modes can be achieved, which will not be affected by the radius and dielectric constant
of the inserted core spheres as the thickness of ENG material shell is larger than a threshold value. The
reason can be explained as that if the thickness of ENG material shell is large enough, and EM wave
will be reflected by the coating shell since it cannot propagate through the ENG material shell, and the
switching state of such PCs will not be changed.

In Figure 7, we present the band structures for such 3D PCs with R1 = 0.1165a, εa = 13.9,
εb = 1, εc = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R2 = 0.2165a but with the different lattices. As shown
in Figures 7(a)–(c), the flatband regions can be observed as PCs with fcc, bcc and sc lattices. The
flatband regions for such three lattices are 0.1187–0.15 (2πc/a), 0.1191–0.15 (2πc/a) and 0.1197–0.15
(2πc/a), respectively. From the results in Figure 7, we know that the unusual surface-plasmon modes
can be found in the flatband region, and the upper edge of the flatband region will not depend on the
topology of lattice. However, the lower edge of the flatband region will be different since the distance
between the inserted core spheres is different. The results can be explained by the Maxwell-Garnett
type effective medium theory. If the frequency of EM wave is less than ωp, the effective dielectric εeff

can be written as [48]

εeff =
εb(1 + 2f1αc)

1− f1αc
(14)

where αc = α0+(R1/R2)3α1(εb+2εp)/(εp+2εb)
1+2(R1/R2)3α1α0

, α1 = εa−εp

εa+2εp
, and α0 = εp−εb

εp+2εb
. Moreover, k = k0

√
εeff and
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Figure 6. The band structures for such 3D PCs with R1 = 0.03a, εb=20, εc = 1, ωp = 0.15ωp0,
γ = 0.02ωpl and R2 = 0.2165a but with the different dielectric of inserted core spheres. (a) εa = 12.4,
(b) εa = 13.9, and (c) Te (no = 4.8, ne = 6.2), respectively.
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Figure 7. The band structures for such 3D PCs with R1 = 0.1165a, εa = 13.9, εb = 1, εc = 1,
ωp = 0.15ωp0, γ = 0.02ωpl and R2 = 0.2165a but with the different lattices. (a) fcc lattices, (b) bcc
lattices, and (c) sc lattices, respectively.
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Figure 8. The upper and lower edges of flatband regions with εa = 13.9, εb = 1, εc = 1, ωp = 0.15ωp0,
γ = 0.02ωpl and R2 = 0.2165a as such PCs with the diamond, fcc, bcc and sc lattices as a function of
R1.

k0 = ω/c. Thus, we know that the dispersion relation will not depend on the topology of lattice since
the wave vectors depends only on the dielectric constant of materials which are introduced into PCs,
the filling of the core spheres and the thickness of ENG material shell. In order to further investigate
the relationship between the PCs lattice and flatbands region, we plot both edges of flatband regions
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with εa = 13.9, εb = 1, εc = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R2 = 0.2165a as the PCs with the
diamond, fcc, bcc and sc lattices as a function of R1 in Figure 8. As shown in Figure 8, the upper
edges of flatband region for such three lattices will be never changed with increasing R1, which are 0.15
(2πc/a). It means that whether the core spheres existing or not will not influence the location of the
upper edges frequencies. However, the lower edges of the flatband regions will shift upward to higher
frequencies. If R1/a 5 0.04, the lower edge frequencies of the flatband regions for such three lattices are
near zero. As the value of R1/a is increased from 0.04 to 0.21, the lower edge frequency for sc lattice
has a larger value than the other three lattices. If R1/a = 0.21, the lower edge frequencies of flatbands
regions for such four lattices will be close to 0.119 (2πc/a). On the other hand, it can also be shown
from Figure 8 that the threshold value for R1/a is 0.04a, which can make the double-shell structure of
such PCs look like a pure ENG material spheres inserted structure.

3.3. The Properties of Tunable Switching Gaps and SBGs

In Figure 9, we plot the dependences of the properties of the first two PBGs on R1 with εa = 13.9, εc = 1,
εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R2 = 0.2165a, respectively. The shaded regions indicate the
PBGs. Figure 9(a) illustrates that R1 is an important parameter to the properties of switching. With
increasing the value of R1/a, both edges of the 1st and 2nd PBGs will shift to lower frequencies, and
their bandwidths will first increase and then decrease. The maximum bandwidths of such two PBGs are
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Figure 9. The effects of R1 on first two PBGs and relative bandwidths for such 3D PCs with εa = 13.9,
εc = 1, εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R2 = 0.2165a, respectively. The shaded regions indicate
the PBGs. (a) The PBGs and (b) the relative bandwidths, respectively.
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Figure 10. The effects of R1 on 1st SBGs in the (1 0 0) and (1 1 1) directions at X and L points and
relative bandwidths for such 3D PCs with εa = 13.9, εc = 1, εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and
R2 = 0.2165a, respectively. (a) The SBG in the (1 0 0) direction at X point, (b) the SBG in the (1 1
1) direction at L point, and (c) the relative bandwidths for SBGs and PBG, respectively.
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0.0691 and 0.0571 (2πc/a), which can be found in the cases of R1/a = 0.155 and 0.12. If R1/a < 0.09
and R1/a > 0.16, the 2nd PBG will disappear. If R1/a < 0.115, the 1st PBG cannot be observed.
It means that the switching of such 3D PCs will turn from off to on state. The relative bandwidths
(∆ω/∆ωi) [34, 35] for such two PBGs are plotted in Figure 9(b). As shown in Figure 9(b), the relative
bandwidths will first increase and then decrease. The maximum values of relative bandwidths are 0.0746
and 0.0406, which appear in the cases of R1/a = 0.16 and 0.12, respectively. If R1/a < 0.9, the relative
bandwidth will equal zero, and the switching state is on. However, if 0.09 6 R1/a 6 0.2165, the off state
can be obtained for such 3D PCs. In Figure 10, we plot the effects of R1 on the 1st SBGs above the
flatband region in the (1 0 0) and (1 1 1) directions at X and L points and their relative bandwidths for
such 3D PCs with εa = 13.9, εc = 1, εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R2 = 0.2165a, respectively.
As shown in Figures 10(a)–(b), both edges of SBGs in (1 0 0) and (1 1 1) directions are downward
to the lower frequency regions, and bandwidths of such two SBGs increase with increasing the value
of R1/a. Compared to the first two PBGs, the SBGs in (1 0 0) and (1 1 1) directions have larger
bandwidths. The largest bandwidth can be found in the SBG in (1 0 0) direction. In Figure 10(c), the
relative bandwidths for PBGs and SBGs are plotted. Figure 10(c) reveals that the relative bandwidths
of SBGs increase with increasing R1/a. The maximum relative bandwidths of SBGs in (1 0 0) and (1
1 1) directions are 0.2778 and 0.2999, which can be found in the case of R1/a =0.2165, respectively.
Compared to the maximum relative bandwidths of complete PBGs, the maximum relative bandwidths
of SBGs in (1 0 0) and (1 1 1) directions are increased by 0.1474 and 0.1695, respectively. Figure 9(c)
also show that the switching state of complete PBGs can be tuned by the radius of the dielectric core
sphere, but the SBGs can not. In other words, the switching state of SBGs in (1 0 0) and (1 1 1)
directions are always in off state. As mentioned above, the radius of the dielectric core sphere cannot
affect the switching state of SBGs but can manipulate the switching state of complete PBGs.

In Figure 11, the dependences of the properties of PBGs on R2 are plotted with εa = 13.9, εc = 1,
εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R1 = 0.1165a, respectively. As shown in Figure 11(a), the
thicknesses of ENG materials shells have slight effect on the first two PBGs. With increasing R2, the
edges of PBG are upward to the higher frequencies, but the bandwidths will increase. As R2/a is
increased from 0.1265 to 0.2165, the bandwidths of the first two PBGs will be increased from 0.0123 to
0.0148 (2πc/a) and from 0.0518 to 0.0522 (2πc/a), respectively. The maximum bandwidths appear in
the cases of R2 = 0.1865 and 0.2165a, respectively. As shown in Figure 11(a), the switching state cannot
be manipulated only by changing R2 as R1 is certain, and the switching state is off. In Figure 11(b),
the relative bandwidths are also plotted. Figure 11(b) shows that the relative bandwidths for the first
two PBGs will increase with increasing R2. We can find the minimum relative bandwidths at cases of
R2 = 0.1265a and 0.1865a, which are 0.0365 and 0.107, respectively. In Figure 12, we present the effects
of R2 on the 1st SBGs above the flatband region in (1 0 0) and (1 1 1) directions at X and L points and
their relative bandwidths with εa = 13.9, εc = 1, εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R1 = 0.1165a,
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Figure 11. The effects of R2 on first two PBGs and relative bandwidths for such 3D PCs with εa = 13.9,
εc = 1, εb = 1, ωp = 0.15ωp0, γ=0.02ωpl and R1 = 0.1165a, respectively. The shaded regions indicate
the PBGs. (a) The PBGs and (b) the relative bandwidths, respectively.
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Figure 12. The effects of R2 on 1st SBGs in the (1 0 0) and (1 1 1) directions at X and L points and
relative bandwidths for such 3D PCs with εa = 13.9, εc = 1, εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and
R1 = 0.1165a, respectively. (a) The SBG in the (1 0 0) direction at X point, (b) the SBG in the (1 1
1) direction at L point, and (c) the relative bandwidths for SBGs and PBG, respectively.
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Figure 13. The effects of ωp on first two PBGs and relative bandwidths for such 3D PCs with
R2 = 0.2165a, εa = 13.9, εc = 1, εb = 1, γ = 0.02ωpl and R1 = 0.1165a, respectively. The shaded
regions indicate the PBGs. (a) The PBGs and (b) the relative bandwidths, respectively.

respectively. As shown in Figures 12(a)–(b), both edges and bandwidths of SBGs in (1 0 0) and (1 1
1) directions are increased with increasing R2. Compared to the SBG in (1 0 0) direction, the SBG
in (1 1 1) direction has a larger bandwidth. In Figure 12(c), the relative bandwidths for SBGs and
PBGs are plotted. As shown in Figure 11(c), with increasing R2, the relative bandwidths of SBG in (1
0 0) direction and the 2nd PBG are almost unchanged which are nearly 0.025 and 0.036, respectively.
However, the relative bandwidths of SBG in (1 1 1) direction and the 1st PBG will decrease and
increase as R2 increased, and the maximum values are 0.0841 and 0.0129 for the cases of R1 = 0.1265a
and 0.2165a, respectively. Compared with the results in Figure 12, the maximum relative bandwidth
can be found in the SBG in (1 1 1) direction. Consequently, if the value of R1 is certain, the switching
state cannot be changed by R1.

In Figure 13, the effects of ωp on the first two PBGs and relative bandwidths for such 3D PCs with
R2 = 0.2165a, εa = 13.9, εc = 1, εb = 1, γ = 0.02ωpl and R1 = 0.1165a respectively, are plotted. As
shown in Figure 13(a), the edges of the first PBGs will be upward to higher frequencies with increasing
ωp. For the 1st PBG, the bandwidth will first increase then decrease, but that for 2nd PBG will decease
as ωp increased. The switching state of PCs can be changed from off to on state. If ωp/ωp0 > 1.2, both
PBGs will disappear. The switching state becomes on. We also know that the maximum bandwidth for
both PBGs can be observed in the cases of ωp/ωp0 = 0.71 and 0.01, which are 0.0305 and 0.0523 (2πc/a),
respectively. It means that the switching state is easier to manipulate in high-ωp region. It can also be
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explained in physics that if ωp is large enough, the effective permittivity can be less than 1. It means
that the refractive contrast and average refractive index for such 3D PCs are changed. Thus, ωp is an
every important parameter to tune the switching state of PCs since the electronic plasma frequency
of ENG materials can always be modulated by many external parameters such as the electric field,
the external magnetic field and the temperature. The relative bandwidths are plotted in Figure 13(b).
Figure 13(b) illustrates that the relative bandwidth for the 1st PBG will first increase then decrease,
but that for 2nd PBG will decrease with increasing ωp, and the maximum relative bandwidths are
0.0246 and 0.0368, which can be found in cases of 0.71 and 0.01. If ωp/ωp0 < 1.2, the off state can
be found. Compared the maximum relative bandwidths with the case of ωp/ωp0 = 0.17, the relative
bandwidths for the first two PBGs are increased by 0.0115 and 0.0001, respectively. In Figure 14, we
plot the effects of ωp on the 1st SBGs in (1 0 0) and (1 1 1) directions at X and L points and their
relative bandwidths with R2 = 0.2165a, εa = 13.9, εc = 1, εb = 1, γ = 0.02ωpl and R1 = 0.1165a,
respectively. As shown in Figures 14(a)–(b), the edges of SBGs are upward to higher frequency regions,
and bandwidths are increased first and then decreased with increasing ωp. There is a jump point in band
structures. The SBGs will be closed at the case of ωp/ωp0 = 0.64 firstly, then a wider SBGs will appear
in higher frequency. The bandwidths of SBG are larger than previous disappeared ones. This can also
be explained in physics that increasing ωp means that the space averaged dielectric constant of such
3D PCs becomes less and that the SBGs can be manipulated with changing PBGs [34, 35]. The SBG
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Figure 14. The effects of ωp on 1st SBGs in the (1 0 0) and (1 1 1) directions at X and L points and
relative bandwidths for such 3D PCs with R2 = 0.2165a, εa = 13.9, εc = 1, εb = 1, γ = 0.02ωpl and
R1 = 0.1165a, respectively. (a) The SBG in the (1 0 0) direction at X point, (b) the SBG in the (1 1
1) direction at L point, and (c) the relative bandwidths for SBGs and PBG, respectively.
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Figure 15. The effects of εc on first two PBGs and relative bandwidths for such 3D PCs with
R2 = 0.2165a, εa = 13.9, εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R1 = 0.1165a, respectively. The
shaded regions indicate the PBGs. (a) The PBG and (b) the relative bandwidth, respectively.
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in (1 1 1) direction has a larger bandwidth than that in (1 0 0) direction. The maximum bandwidths
for these two SBGs are 0.0649 and 0.066 (2πc/a) in the cases of ωp/ωp0 = 0.01 and 0.6, respectively.
The bandwidths of SBGs and PBGs are also presented in Figure 13(c). As shown in Figure 14(c), the
larger relative bandwidths can be obtained in the SBG in (1 1 1) direction. The maximum bandwidths
of these two SBGs and PBGs are 0.0839, 0.0555, 0.0246 and 0.0368, which can be observed in the cases
of ωp/ωp0 = 0.01, 0.64, 0.74 and 0.01, respectively. Compared to the case of ωp/ωp0 = 0.17, the relative
bandwidths of SBGs and PBGs are increased by 0.0066, 0.031, 0.0305 and 0.0523, respectively. It is
noticed that there is a frequency region, which can make switching state of PCs change form off to on.
It means that such 3D PCs can be applied in designing WDM [37]. It is also noticed that the damping
factor of the ENG materials has no effect on switching state and SBGs since it only determines the
degree of energy absorbed [34, 35]. As mentioned before, the switching properties of such 3D PCs can
be tuned obviously by ωp, and the on state can be obtained in the high-ωp region.

In Figure 15, the effects of εc on the switching properties of the first two PBGs are plotted with
R2 = 0.2165a, εa = 13.9, εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R1 = 0.1165a, respectively. Figure 15(a)
shows that the edges of PBGs will shift to lower frequencies, and the bandwidths decease with increasing
εc. If εc > 1.2, the 1st PBG will disappear, but the 2nd PBG will be closed at εc = 2.5. It means that
the switching state of such PCs can also be tuned by εc. If εc 5 1.2, the switching state will be off, and
the frequency region of ‘off’ state will be changed and moved to higher frequencies as 1.2 < εc 5 2.5.
The on state can be obtained as εc > 2.5. This can also be explained in physics that increasing εc means
that the refractive contrast and average refractive index for such 3D PCs becomes larger and that the
PBGs can be manipulated [49]. The maximum bandwidths of the first two PBGs are 0.0148 and 0.0523
(2πc/a), which can be observed in the cases of εc = 1. We plot the relative bandwidths in Figure 15(b).
As shown in Figure 15(b), the relative bandwidths of the first two PBGs will decrease with increasing
εc. The maximum bandwidths of the first two PBGs are 0.0129 and 0.0366, which can be observed in
the cases of εc = 1, respectively. In Figure 16, we plot the effects of εc on the 1st SBGs in (1 0 0) and (1
1 1) directions at X and L points and their relative bandwidths with R2 = 0.2165a, εa = 13.9, εb = 1,
ωp = 0.15ωp0, γ = 0.02ωpl and R1 = 0.1165a, respectively. As shown in Figures 16(a)–(b), the edges of
SBGs will shift downward to lower frequencies with increasing εc. For the 1st SBG in (1 0 0) direction,
the bandwidth will increase, but that for the 1st SBG in (1 1 1) direction, the bandwidth will increase
first then decrease. The maximum bandwidths of SBGs are 0.0896 and 0.201 (2πc/a), respectively.
Compared to the SBG in (1 1 1) direction, the SBG in (1 0 0) direction has a larger bandwidth. The
relative bandwidths of SBGs and PBGs are plotted in Figure 16(c). As shown in Figure 16(c), the SBG
in (1 1 1) direction has larger relative bandwidth than those for PBGs and SBG in (1 0 0) direction.
The maximum bandwidths of such two SBGs and first two PBGs are 0.2965, 0.3389, 0.0366 and 0.0129,
which can be found in the cases of εc = 2.5, 2, 1 and 1, respectively. As mentioned above, the PBGs of
such 3D PCs can be changed by εc, and the off state will appear in the low-εc region.
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Figure 16. The effects of εc on 1st SBGs in the (1 0 0) and (1 1 1) directions at X and L points and
relative bandwidths for such 3D PCs with R2 = 0.2165a, εa = 13.9, εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl

and R1 = 0.1165a, respectively. (a) The SBG in the (1 0 0) direction at X point, (b) the SBG in the
(1 1 1) direction at L point, and (c) the relative bandwidths for SBGs and PBG, respectively.
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In Figure 17, the dependences of the properties of first two PBG on εb are plotted with R2 = 0.2165a,
εa = 13.9, εc = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R1 = 0.1165a, respectively. As shown in Figure 17(a),
the first two complete PBGs can be affected obviously by the background dielectric εb. With increasing
εb, the edges and bandwidths of PBGs will be downward to lower frequencies. It is worth to notice
that if εb > 1.08, the 1st PBG will disappear, and the 2nd PBG will be closed at εb > 1.08. The
maximum bandwidths of the first two PBGs are 0.0148 and 0.0522 (2πc/a), which can be found in the
cases of εb = 1. Figure 17(a) illustrates that the switching state of such 3D PCs can be changed by εb.
If εb 5 1.08, the switching state is off. If εb > 2.2, the on state can be obtained, and the PBGs will
disappear. In Figure 17(b), the curves of relative bandwidths can be found. As shown in Figure 17(b),
the relative bandwidths of PBG will decrease with increasing εb. The maximum relative bandwidths are
0.0129 and 0.0366, which appear in the cases of εb = 1. Compared to the case of εb = 2.2, the relative
bandwidths are decreased by 0.0129 and 0.0255. In Figure 18, we plot the effects of εb on the 1st SBGs
in (1 0 0) and (1 1 1) directions at X and L points and their relative bandwidths with R2 = 0.2165a,
εa = 13.9, εc = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R1 = 0.1165a, respectively. Figures 18(a)–(b) show
that both edges of these two SBGs shift downward to lower frequencies with increasing εb. For SBG
in (1 0 0) direction, the bandwidth is decreased as εb increases, but that for SBG in (1 0 0) direction
first decreases and then increases, and a contraction point can be observed. The maximum bandwidths
of these two SBGs are 0.0681 and 0.023 (2πc/a), which can be found in cases of εb = 1, respectively.
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Figure 17. The effects of εb on first two PBGs and relative bandwidths for such 3D PCs with
R2 = 0.2165a, εa = 13.9, εc = 1, ωp = 0.15ωp0, γ = 0.02ωpl and R1 = 0.1165a, respectively. The
shaded regions indicate the PBGs. (a) The PBGs, and (b) the relative bandwidths, respectively.
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Figure 18. The effects of εb on 1st SBGs in the (1 0 0) and (1 1 1) directions at X and L points and
relative bandwidths for such 3D PCs with R2 = 0.2165a, εa = 13.9, εc = 1, ωp = 0.15ωp0, γ = 0.02ωpl

and R1 = 0.1165a, respectively. (a) The SBG in the (1 0 0) direction at X point, (b) the SBG in the
(1 1 1) direction at L point, and (c) the relative bandwidths for SBGs and PBG, respectively.
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In Figure 18(c), the relative bandwidths for PBGs and SBGs are plotted. As shown in Figure 18(c),
the relative bandwidths of the first two PBGs and SBG in (1 0 0) direction will decease, but that for
SBG in (1 1 1) direction will decrease first then increase with increasing εb. The maximum relative
bandwidths of PBGs and SBGs are 0.0129, 0.0366, 0.0253 and 0.0877, which appear in the cases of
εb = 1, respectively. Compared to the case of εb = 2.2, the relative bandwidths of PBGs and these
two SBGs are decreased by 0.024, 0.0631, 0.0129 and 0.0274, respectively. From the aforementioned
discussions, the switching state of such 3D PCs can also be tuned obviously by εb. The off state can
be obtained in low-εb region. This can be explained by that the refractive index contrasts of PCs are
not large enough to open a PBG if εb is large enough [34, 35, 49]. On the other hand, the SBG in (1
0 0) direction will be closed in hight-εb region, but that in (1 1 1) direction will never disappear with
increasing εb.

4. CONCLUSION

In summary, the PBG properties and switching state of 3D PCs with diamond lattices, which are
composed of the core dielectric spheres with surrounded by the ENG materials shells inserted in the
air, are theoretically studied in detail based on a modified PWE method. The equations for computing
band structures for such 3D PCs are presented. Based on the numerical results, some conclusions can
be drawn. Compared to the conventional inserted dielectric spheres structure, the complete PBG can
be enlarged by the double-shell structure as the ENG materials are introduced. The optical switching
state and SBGs in (1 0 0) and (1 1 1) directions can also be realized easily and modulated by the radius
of core dielectric sphere, relative dielectric constant of background, dielectric constant of ENG material
and electronic plasma frequency, respectively. It is worth to note that the switching state can be changed
by εb, εc, ωp and R1, respectively. However, tuning γ and R2 cannot tune the switching state of PCs
as the radius of core dielectric sphere is certain. With increasing R1, εc and εb, the edges of complete
PBGs and SBGs will be downward to lower frequencies, and the larger relative bandwidth always can
be found in SBG in the (1 1 1) direction. However, with increasing ωp, the edges of first two PBGs and
SBGs will shift upward to higher frequencies, the larger relative bandwidths of PBGs and SBGs can be
found in low-ωp region. The numerical simulations also show that the unusual surface-plasmon modes
can be found in the flatband region. The unusual properties include the following points: firstly, there
is a threshold value for the thickness of ENG materials shell, which can take the dispersive curves of
such 3D double-shell structures PCs be similar to those obtained from the same structures containing
the pure ENG materials spheres. In this case, the dielectric function of inserted core sphere will not
affect the band structures. It means that we can achieve the PBGs by replacing the pure inserted
sphere structures with such double-shell structures to make fabrication easily and save the material
in the realization. Secondly, the upper edge of flatbands region does not depend on the topology of
lattice, and the lower edge frequencies of flatbands regions for different lattices will tend to a constant
as the ENG material shell is close to zero. As mentioned above, the presented 3D PCs with double-shell
structures offer a novel way to realize the WDM.
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