Vol. 34
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-11-21
Accurate and Fast Extraction of the Bloch Eigenmodes of Fiber Gratings
By
Progress In Electromagnetics Research M, Vol. 34, 29-37, 2014
Abstract
Based on Bloch-Floquet's theorem and ordinary matrix calculations, a rigorous method for extraction of the eigenmodes of fiber gratings is developed. This method is also applicable to fiber gratings which are either physically multilayer or mathematically divided into layers along the radial coordinate. Although the well-known coupled mode theory (CMT) is accounted a method for extraction of the coefficients of reflection and transmission of finite-length FBGs, its inadequacy for extraction of the Bloch eigenmodes of FBGs is illustrated, even if the modulation depth of refractive index is small and the Bragg condition is satisfied.
Citation
Amir M. Jazayeri, "Accurate and Fast Extraction of the Bloch Eigenmodes of Fiber Gratings," Progress In Electromagnetics Research M, Vol. 34, 29-37, 2014.
doi:10.2528/PIERM13101907
References

1. Passaro, R. Diana, and M. N. Armenise, "Optical fiber Bragg gratings. Part I. Modeling of infinitely long gratings," JOSA A, Vol. 19, No. 9, 1844-1854, 2002.
doi:10.1364/JOSAA.19.001844

2. Lalanne, P. and E. Silberstein, "Fourier-modal methods applied to waveguide computational problems," Opt. Lett., Vol. 25, No. 15, 1092-1094, 2000.
doi:10.1364/OL.25.001092

3. Silberstein, E., P. Lalanne, J. P. Hugonin, and Q. Cao, , "Use of grating theories in integrated optics," JOSA A, Vol. 18, No. 11, 2865-2875, 2001.
doi:10.1364/JOSAA.18.002865

4. Lu, Y. C., L. Yang, W. P. Huang, and S. S. Jian, "Unified approach for coupling to cladding and radiation modes in fiber Bragg and long-period gratings," IEEE J. Lightw. Techn., Vol. 27, No. 11, 1461-1468, 2009.
doi:10.1109/JLT.2009.2012725

5. Song, N., J. Mu, and W. P. Huang, "Application of the complex coupled-mode theory to optical fiber grating structures," IEEE J. Lightw. Techn., Vol. 28, No. 5, 761-767, 2010.
doi:10.1109/JLT.2010.2041428

6. Li, L., "Note on the S-matrix propagation algorithm ," JOSA A, Vol. 20, No. 4, 655-660, 2003.
doi:10.1364/JOSAA.20.000655

7. Moharam, M. G. and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," JOSA, Vol. 73, No. 9, 1105-1112, 1983.
doi:10.1364/JOSA.73.001105

8. Szkopek, T., V. Pasupathy, J. E. Sipe, and P. W. E. Smith, "Novel multimode fiber for narrow-band Bragg gratings," IEEE J. Sel. Top. Quant. Electr., Vol. 7, No. 3, 425-433, 2001.
doi:10.1109/2944.962266

9. Mohammed, W., X. Gu, and P. W. E. Smith, "Full vectorial modal analysis of specialty fibers and their Bragg grating characterization," Appl. Opt., Vol. 45, No. 14, 3307-3316, 2006.
doi:10.1364/AO.45.003307

10. Erdogan, T. and J. E. Sipe, "Tilted fiber phase gratings," JOSA A, Vol. 13, No. 2, 296-313, 1996.
doi:10.1364/JOSAA.13.000296

11. Erdogan, T., "Fiber grating spectr," IEEE J. Lightw. Techn., Vol. 15, No. 8, 1277-1294, 1997.
doi:10.1109/50.618322

12. Erdogan, T., "Cladding-mode resonances in short- and long-period fiber grating filters," JOSA A, Vol. 14, No. 8, 1760-1773, 1997.
doi:10.1364/JOSAA.14.001760

13. Lu, C. and Y. Cui, "Fiber Bragg grating spectra in multimode optical fibers," IEEE J. Lightw. Techn., Vol. 24, No. 1, 598-604, 2006.
doi:10.1109/JLT.2005.859841

14. Yariv, A. and P. Yeh, Photonics: Optical Electronics in Modern Communication.

15. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," JOSA A, Vol. 13, No. 9, 1870-1876, 1996.
doi:10.1364/JOSAA.13.001870

16. Nishihara, H., M. Haruna, and T. Suhara, Optical Integrated Circuits, McGraw-Hill, 1989.