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Accurate and Fast Extraction of the Bloch Eigenmodes
of Fiber Gratings

Amir M. Jazayeri*

Abstract—Based on Bloch-Floquet’s theorem and ordinary matrix calculations, a rigorous method for
extraction of the eigenmodes of fiber gratings is developed. This method is also applicable to fiber
gratings which are either physically multilayer or mathematically divided into layers along the radial
coordinate. Although the well-known coupled mode theory (CMT) is accounted a method for extraction
of the coefficients of reflection and transmission of finite-length FBGs, its inadequacy for extraction of
the Bloch eigenmodes of FBGs is illustrated, even if the modulation depth of refractive index is small
and the Bragg condition is satisfied.

1. INTRODUCTION

For a waveguide grating, which is periodic along the longitudinal coordinate z, Bloch-Floquet’s theorem
states that the electromagnetic fields everywhere are quasi-periodic functions of z, and can be written as
quasi-Fourier series versus z, i.e., Fourier series versus z multiplied by a common factor consisting of the
Bloch wavenumber [1]. This is in contrast to the viewpoint of some authors who introduce an artificial
periodicity in the transverse direction [2, 3], or who do not use the physical/artificial periodicity [4, 5].

The cylindrical coordinates (r, ϕ, z) are naturally used for a fiber grating, which is periodic along
the z-axis. The rigorous method proposed in Section 2 resembles Fourier modal methods for planar
diffraction gratings [6, 7], although the Bloch wavenumber is predetermined by the incident plane wave
for diffraction problems, and is to be found here.

Unlike the analysis of fiber gratings presented in [1], instead of numerically solving four coupled
differential equations for the four components Ez, Hz, Eϕ, and Hϕ, two uncoupled matrix eigenproblems
for the first two components are derived in Section 2, then the other two components are derived
accordingly. The proposed rigorous method can be used for a multilayer fiber grating, i.e., a fiber
grating with concentric shells [8, 9]. It is also applicable to other types of fiber gratings by dividing the
structure into large enough number of layers along the radial coordinate.

Traditionally, analysis of a fiber Bragg gratings (FBG), which by definition has small modulation
depth of refractive index along the z-axis, is performed via coupled mode theory (CMT) [10–13].
According to the literature, CMT is a method for extraction of the coefficients of reflection and
transmission of a finite-length FBG inscribed into an ordinary optical fiber. However, the fact that
the Bloch eigenmodes of an FBG can also be extracted by CMT is often overlooked [14], and therefore,
is emphasized in Section 3. However small modulation depth of refractive index is chosen, and even
if the Bragg condition is satisfied, striking discrepancy between the Bloch wavenumbers extracted by
CMT and by the proposed rigorous method is illustrated in Section 4.

2. PROPOSED RIGOROUS METHOD

A simple FBG consists of a longitudinally periodic core which is placed in an homogeneous environment
with a relative permittivity εs, but the rigorous method to be proposed here is also applicable to fiber
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Figure 1. The generic structure which the proposed method is applicable to. The environment is a
homogeneous material. The other regions are each either homogenous or periodic along the z-axis with
a common period.

gratings which have p layers between the core and the environment as depicted in Fig. 1. These layers
can have different longitudinally periodic permittivities but with the same period Λ as the core.

Each of the Bloch eigenmodes of this fiber has an azimuthal variation ejmϕ, where m = 0, 1, 2, . . ..
It is worth noting that the TE (Ez = 0) and TM (Hz = 0) Bloch eigenmodes exist only when m = 0.

The relative permittivity and its inverse in each region, including the environment as a homogenous
material, can be written as Fourier series versus z as follows:

εr(z) =
∑

l

εrl
ejl 2π

Λ
z, (1)

1
εr(z)

=
∑

l

ηrl
ejl 2π

Λ
z, (2)

where εr(z) is the relative permittivity of that region. Based on Bloch-Floquet’s theorem, the
electromagnetic fields in that region can also be written as quasi-Fourier series versus z, i.e., Fourier
series versus z multiplied by a common factor ejκz, where κ is the Bloch wavenumber which has to be
found. Therefore, the quasi-Fourier series for Ez, Hz, Eϕ, and Hϕ in each region read as

Ez = ejmϕejκz
∑

l

ejl 2π
Λ

zezl
(r), (3)

Hz = ejmϕejκz
∑

l

ejl 2π
Λ

zhzl
(r), (4)

Eϕ = ejmϕejκz
∑

l

ejl 2π
Λ

zeϕl
(r), (5)

Hϕ = ejmϕejκz
∑

l

ejl 2π
Λ

zhϕl
(r), (6)

where {ezl
(r)}, {hzl

(r)}, {eϕl
(r)}, and {hϕl

(r)} are four sets of unknown r-dependent coefficients
peculiar to that region. In practice, all the Fourier/quasi-Fourier series have to be truncated up to
N harmonics in total: −M ≤ l ≤ M if N = 2M + 1, and −M ≤ l ≤ M − 1 if N = 2M .

Unlike Ref. [1], instead of numerically solving four coupled differential equations for the four
components Ez, Hz, Eϕ, and Hϕ, we begin with Ez and Hz for which two uncoupled matrix
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eigenproblems are derived. As discussed in Appendix, the equations

k2
0εrEz +

∂

∂z

(
1
εr

∂

∂z
(εrEz)

)
= −∇2

t Ez, (7)

k2
0εrHz +

∂

∂z2
Hz = −∇2

t Hz, (8)

are valid within each region, where εr(z) is the relative permittivity of the region, ejωt is the time
variation, k0 = ω

√
µ0ε0, and ∇2

t = ∇2 − ∂2

∂z2 . By introducing the right-hand sides of Eqs. (1), (2),
and (3) into Eq. (7), and taking into consideration the linear independence of the functions {ejl 2π

Λ
z}

from each other on 0 < z < Λ, the following relationship is obtained in each region:
(
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0[[εr]]−K[[1/εr]]K[[εr]]
)
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∂r2
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1
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∂
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r2

)
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where [Ez] denotes a column vector consisting of the functions {ezl
(r)} in that region, K a diagonal

matrix with the diagonal entries κ+l2π/Λ, and [[f ]] a Toeplitz matrix whose entry [[f ]]pq is the coefficient
p− q in the Fourier series of f(z). Therefore, the general solution to Eq. (9) is in the form of

[Ez] =
∑
n
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nH(2)
m (ke

nr) + be
nH(1)

m (ke
nr)

)
~V e

n , (10)

where {ae
n} and {be

n} are two sets of unknown coefficients peculiar to that region, and ke2

n and ~V e
n are the

nth eigenvalue and the nth eigenvector of the matrix k2
0[[εr]]−K[[1/εr]]K[[εr]], respectively. Similarly,

Eq. (8) together with Eqs. (1) and (4) yield the following general solution to [Hz] in that region:
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(
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(
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where [Hz] denotes a column vector consisting of the functions {hzl
(r)} in that region. {ah

n} and {bh
n}

are two other sets of unknown coefficients peculiar to that region, and kh2

n and ~V h
n are the nth eigenvalue

and the nth eigenvector of the matrix [[εr]]k2
0 −K2, respectively.

For the environment, which is the external region, only the Hankel functions H
(2)
m (knr) can be

retained, where

k2
n = ke2

n = kh2

n = k2
0εs −

(
κ + n

2π

Λ

)2

, (12)

and the square root of k2
n is defined by a criterion to be addressed at the end of this section. For the

core, which includes the z-axis, the Bessel functions Jm(ke
nr) and Jm(kh

nr) should be used, i.e.,
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nJm (ke

nr) ~V e
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(
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nr
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In other words, for each of the environment and the core, {be
n} and {bh

n} are zero.
The components Eϕ and Hϕ have yet to be found. Assuming µr = 1, Eq. (A6) for ~Ht and its

counterpart for ~Et yield the following equations in each region:[
∂
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(
1
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∂
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)
+ k2

0

]
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By introducing the right-hand sides of Eqs. (2), (3), (4), and (6) into Eq. (15), and taking into
consideration the linear independence of the functions {ejl 2π

Λ
z} from each other on 0 < z < Λ, the

following relationship is obtained in that region:
(−K[[1/εr]]K + k2

0Id

)
[Hϕ] = −jωε0

∂

∂r
[Ez]− m

r
K[[1/εr]][Hz], (17)
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where the column vector [Hϕ] consists of the functions {hϕl
(r)} in that region, and Id is the identity

matrix. In view of Eq. (17) together with Eqs. (10) and (11), the general solution to [Hϕ] can be written
in terms of the same coefficients {ae

n, be
n, ah

n, bh
n} used for [Ez] and [Hz] in that region according to the

following relationship:
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Similarly, Eq. (16) yields the following general solution to [Eϕ]:
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where the column vector [Eϕ] consists of the functions {eϕl
(r)} in that region.

It is worth noting that the inverse multiplication rule of the Fourier factorization helps analysis
of gratings whose periodic variation of refractive index has discontinuity like lamellar diffraction
gratings [15]. The structures here usually have continuous variation of refractive index versus z, and
therefore the formulation with Laurent’s rule, which slightly differs from the formulation with the inverse
multiplication rule, was proposed above. As expected, it can be seen both of the formulations render
the same results for the examples given in Section 4.

From Eqs. (10), (11), (18), and (19), it is evident that an r-dependent matrix W in
each region relates the column vector ( [Ez]T [Hz]T [Eϕ]T [Hϕ]T )T to the column vector
( ~AeT ~AhT ~BeT ~BhT )T , where the column vectors ~Ae, ~Ah, ~Be, and ~Bh consist of the coefficients
{ae

n}, {ah
n}, {be

n}, and {bh
n} defined in that region. Therefore, by imposing boundary conditions for the

column vector ( [Ez]T [Hz]T [Eϕ]T [Hϕ]T )T at interface between two adjacent regions, the column
vector ( ~AeT ~AhT ~BeT ~BhT )T in one side simply relates to its counterpart in the other side. By
following the S-matrix algorithm as proposed in [6], a matrix equation

S
(

~AeT

c
~AhT

c
~AeT

s
~AhT

s

)T
= ~0 (20)

is easily found, where the column vectors ( ~AeT

c
~AhT

c )T and ( ~AeT

s
~AhT

s )T belong to the core and the
environment, respectively. To have a non-all-zero solution, the determinant of S has to be zero, and
therefore the Bloch wavenumbers are found by locating the roots of det(S).

Generally speaking, the Bloch wavenumbers are located on the complex plane depending on the
criterion whereby the square root of k2

n in the environment, which appeared in Eq. (12), is defined.
Given the Hankel functions H

(2)
m (knr) in the environment, a necessary condition for the bounded Bloch

eigenmodes is that each kn has a negative imaginary part so that the electromagnetic fields approach
zero at r → ∞. The other necessary condition for the bounded Bloch eigenmodes is that no power is
transferred along the radial coordinate. Based on these two conditions, and by taking notice of the far-
field zone with large enough r, the form of the Bloch wavenumber of a bounded Bloch eigenmode belongs
to one of these three categories; first, {κ = ±κR : k0

√
εs < κR < π/Λ}, second, {κ = ±jκI : κI > 0},

and third, {κ = π/Λ± jκI : κI > 0}. It is evident that k0
√

εs < π/Λ is a prerequisite for the existence
of the first category.

As already mentioned, in practice all the Fourier/quasi-Fourier series are truncated up to N
harmonics. To numerically make the radial transfer of power zero, the harmonics −M ≤ l ≤ M − 1 are
kept (N = 2M) if the form of the Bloch wavenumber belongs to the third category mentioned above.
Otherwise, the harmonics −M ≤ l ≤ M are retained (N = 2M + 1).
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3. CMT AS CONVENTIONAL METHOD

From the viewpoint based on CMT, the longitudinal periodicity of permittivity, as depicted in Fig. 1,
is accounted a periodic perturbation in another fiber which is uniform along the z-axis, and named
the unperturbed fiber [16]. Each of Ez, Hz, Eϕ, and Hϕ is written as a linear combination of the
same transverse component of the modes (forward and backward) supported by the unperturbed fiber.
Unknown coefficient of each mode in these expansions is z-dependent, and is assumed to be identical in
all of the four expansions. In theory, the bounded modes and the radiation modes of the unperturbed
fiber, whose propagation wavenumbers are discrete and continuous, respectively, have to be retained in
the expansions, but in practice only the bounded modes are usually kept.

In accordance with the examples to be given in Section 4, only a simple structure consisting of a
periodic core inside an environment, namely with p = 0 in Fig. 1, is examined here by CMT. Therefore,
the associated unperturbed structure is a step-index fiber. If the perturbation in the relative permittivity
of the core of the unperturbed fiber is ∆εr(z) = δ cos(2πz/Λ), where δ is small in comparison with the
average relative permittivity of the unperturbed fiber, and if there is a bounded mode supported by the
unperturbed fiber with a propagation wavenumber β0 very close to π/Λ, this mode and its backward
version (with the propagation wavenumber −β0) have the most contribution in the CMT expansions.
Therefore, the CMT equations read as:

dcβ0/dz = −jγej2(β0−π/Λ)zc−β0 , (21)

dc−β0/dz = jγe−j2(β0−π/Λ)zcβ0 , (22)

where cβ0 and c−β0 are the z-dependent coefficients of the forward and backward modes in the CMT
expansions, respectively,

γ = (ωε0δ/8)
∫

core cross-section

~Eβ0 · ~E∗
β0

ds (23)

is the coupling coefficient between them, and ~Eβ0 is their normalized electric field, i.e.,
∫

∞ cross-section

~Eβ0 · ~E∗
β0

ds = 2ωµ0/β0. (24)

According to the literature, Eqs. (21) and (22) successfully yield the coefficients of reflection and
transmission when the aforementioned FBG, which is inscribed into its associated unperturbed fiber,
has a finite length L along the z-axis, and is excited by that mode of the unperturbed fiber with the
propagation wavenumber β0.

Apart from extraction of the coefficients of reflection and transmission, the general solution to
the differential equations in Eqs. (21) and (22) demonstrates that the general solution to a transverse
component of the electromagnetic fields is a linear combination of two exponential functions ejκz and
e−jκz, where κ = π/Λ ± j

√
γ2 − (β0 − π/Λ)2 is the Bloch wavenumber obtained by CMT [14]. It is

worth noting that β0, γ, and κ are all dependent on λ0, where λ0 = 2π/k0 is the wavelength in vacuum.

4. RESULTS AND CONCLUSIONS

Discrepancy between the Bloch wavenumbers extracted by the rigorous method proposed in Section 2,
and by CMT as discussed in Section 3, is illustrated. Each example is a simple FBG consisting
of a periodic core with a diameter D and a relative permittivity ∆εr(z) = εrdc

+ δ cos(2πz/Λ)
inside an environment with a relative permittivity εs. The values εrdc

= (1.4545 + 0.0022)2, δ =
2(1.4545 + 0.0022)(0.0022), and εs = (1.45)2 are assumed throughout this section, which are the values
used in [13]. Each FBG has an associated unperturbed fiber consisting of a core with the relative
permittivity εrdc

and the same diameter D inside the same environment.
For the first example, D = 8µm. Therefore, the associated unperturbed fiber is singlemode

at the vacuum wavelength 1.55µm, and supports an HE mode with the propagation wavenumber
βHE = 5.8912µm−1. The periodicity Λ of the FBG is chosen to satisfy the Bragg condition π/Λ = βHE
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(a)

(b)

Figure 2. (a) The real and (b) imaginary parts of the Bloch wavenumber of the bounded Bloch
eigenmode of the first structure in Section 4, extracted by the proposed rigorous method (crosses) and
CMT (circles). The dashed lines in part (a) depict π/Λ and k0

√
εs.

at the vacuum wavelength 1.55 µm, and thus to ideally provide the prerequisite for Eqs. (21) and (22)
of the CMT approach. Figs. 2(a) and 2(b) show the real and imaginary parts of the Bloch wavenumber
extracted by the rigorous method, and by CMT, for this FBG.

For the second structure, D = 8.55 µm. Therefore, the associated unperturbed fiber is multimode
at the vacuum wavelength 1.55µm, and supports a TE mode with the propagation wavenumber
βTE = 5.8779µm−1. The periodicity Λ of the FBG is chosen to satisfy the Bragg condition π/Λ = βTE

at the vacuum wavelength 1.55µm. Figs. 3(a) and 3(b) depict the results for this case.
For each of the above-mentioned structures, the real and imaginary parts of the Bloch wavenumber

extracted by the proposed rigorous method converge with only M = 1, i.e., with N = 3 and N = 2 for
the real and imaginary parts respectively.

The value of δ is 0.0064, yet the percent error of CMT in extraction of the imaginary part of the
Bloch wavenumber is between 30 and 100 for the first example, and between 60 and 100 for the second
example. However small δ is taken, the percent error of CMT is large, especially for the imaginary part
of the Bloch wavenumber.

This error is probably due to the facts that; first, cβ0 (or c−β0) in Eqs. (21) and (22) is assumed to
be the coefficient of all the four transverse components of the electromagnetic fields of the forward (or
backward) bounded mode of the unperturbed fiber in the CMT expansions; and second, the radiation
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(a)

(b)

Figure 3. (a) The real and (b) imaginary parts of the Bloch wavenumber of the bounded Bloch
eigenmode of the second structure in Section 4, extracted by the proposed rigorous method (crosses)
and CMT (circles). The dashed lines in part (a) depict π/Λ and k0

√
εs. For vacuum wavelengths shorter

than 1.5496µm, the bounded Bloch eigenmode no longer exists.

modes of the unperturbed fiber are excluded from the CMT expansions.
If an FBG with a periodicity Λ is excited by a forward bounded mode of its associated unperturbed

fiber with a propagation wavenumber β0 ≈ π/Λ, this mode and its backward version (with the
propagation wavenumber −β0) have the most contribution in the CMT expansions, whereas each of
the radiation modes of the unperturbed fiber only has an infinitesimal contribution, and is excluded
from the CMT expansions, hence Eqs. (21) and (22). Nonetheless, the fact that there is a continuum
of the radiation modes of the unperturbed fiber, which are all excluded from the CMT expansions, can
potentially manifest itself in the inaccuracy of the resultant Bloch eigenmode. Even assuming that
CMT accurately predicts the percentages of the reflected and transmitted powers, it is not a convincing
argument for the accuracy of the Bloch eigenmodes obtained by CMT. As a simpler case in a different
context, it is evident that all the incident power is reflected from a short-circuit load in a lossless
transmission line irrespective of the wavenumber of the eigenmode supported by the transmission line.

The importance of the proposed rigorous method is even more considerable when modulation depth
of refractive index is increased and/or when the accurate Bloch eigenmode of a fiber grating in the linear
regime is to be used in a nonlinear analysis of the same structure via perturbation methods.
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APPENDIX A.

Maxwell’s curl equations read:

∇t × (ẑEz) + ẑ × ∂

∂z
~Et = −jω ~Bt, (A1)

∇t × ~Et = −jωẑBz, (A2)

∇t × (ẑHz) + ẑ × ∂

∂z
~Ht = jω ~Dt, (A3)

and

∇t × ~Ht = jωẑDz. (A4)

The discussion is limited to a material which is linear and isotropic with a relative permittivity εr

and a relative permeability µr. Therefore, Eq. (A1) states that:

~Ht =
1

jωµ0µr

[
ẑ ×∇tEz − ∂

∂z
ẑ × ~Et

]
. (A5)

From Eqs. (A3) and (A5) it is evident that:

~Ht =
1

jωµ0µr

[
ẑ ×∇tEz − 1

jωε0

∂

∂z

[
1
εr

[
∇tHz − ∂ ~Ht

∂z

]]]
,

and therefore:

k2
0µr

~Ht +
∂

∂z

(
1
εr

∂ ~Ht

∂z

)
= −jωε0ẑ ×∇tEz +

∂

∂z

(
1
εr
∇tHz

)
. (A6)

Assuming that εr and µr depend only on the longitudinal coordinate z, and using both of Eq. (A4) and
the transverse curl (∇t×) of Eq. (A6), the following relationship is obtained:

∇2
t Ez +

∂

∂z

(
1
εr

∂ (εrEz)
∂z

)
+ k2

0µrεrEz = 0, (A7)

which is the same as Eq. (7) when µr = 1.
Along the same line, Eq. (8) is derived from Eqs. (A3), (A1), and (A2).
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